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The Dynamics of Attending: How People Track Time-Varying Events
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A theory of attentional dynamics is proposed and aimed at explaining how listeners respond to systematic
change in everyday events while retaining a general sense of their rhythmic structure. The approach
describes attending as the behavior of internal oscillations, called attending riythms, that are capable of
entraining to external events and targeting attentional energy to expected points in time. A mathematical
formulation of the theory describes internal oscillations that focus pulses of attending energy and interact
in various ways to enable attentional tracking of events with complex rhythms. This approach provides
reliable predictions about the role of attending to event time structure in rhythmical events that modulate

in rate, as demonstrated in 3 listening experiments.

Virtually all things in one’s environment have extension in time,
some too brief to be perceptible and others too long to be imag-
ined. Everyday events, however, occur at time scales over which
one can attend. When people hear friends engage in a conversation
or listen to a familiar tune, when they watch a basketball game, or
when they observe a mother—infant exchange, they are engaged by
temporally patterned changes occasioned by natural forces. Such
events comprise actions and movements that display distinct be-
ginnings, recognizable rhythms, characteristic tempos, and lawful
endings (e.g., Bertenthal & Pinto, 1987; Boltz, 1992; Johansson,
1973; Johansson, von Hofsten, & Jansson, 1980; Jones, 1990;
Neisser & Becklen, 1975; Pickett, 1980; Pike, 1945). Yet, there is
a fascinating element of flexibility in the time structure of natural
events. Temporal relationships modulate as events unfold: Rates
change, rhythms vary, and structures transform.

This presents a puzzle. The puzzle is most evident in dynamic
events in which a clear temporal structure is apparent, yet the
temporal components are not fixed. This happens, for instance,
when a song increases in tempo or when a moving basketball
player relaxes the rate of a dribble. The puzzle is as follows:
Observers appear to apprehend stable rhythmic structures in such
events, even as the periodicities that compose these structures
fluctuate greatly. Although this phenomenon is common, only
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recently has it received much attention, largely in studies of
musical events. Typically, musical performers shape the structure
of melodies and rhythms to their own ends, playing ahead of an
implied beat, modulating tempo, adding expressive emphasis, and
so on. Consequently, the acoustic patterns they produce exhibit
great temporal flexibility (e.g., Gabrielsson, 1986; Palmer, 1989;
Repp, 1992; Shaffer, 1981, 1982). Yet, listeners are readily able to
identify the meter, recognize the rhythm, and follow the tempo, as
well as perceive meaning in deviations from the implied structure
(Epstein, 1995; Palmer, 1989).

Figure 1 illustrates this. Panel A shows a notated sequence of
pitches (a melodic phrase); Panel B shows a performance of the
pitch sequence (an event) recorded on a computer-monitored piano
(Large, Palmer, & Pollack, 1995). The sequence in Panel C illus-
trates onset times and amplitudes of successive notes. Although the
score prescribes a strict thythmic pattern, the rhythmic proportions
actually produced in this performance vary greatly (e.g., to 40% of
the mean beat duration), as indicated in Panel D, where the relative
duration of each interonset interval (IOI) is plotted.' Rate varies
locally, first accelerating (relative IOI decreases) and then decel-
erating (relative YOI increases) as the performer shapes this phrase.
Similar distortions occur in speech, in which rate and other timing
features vary (e.g., hesitations and expressive contrasts), thus
rendering problematic simple and precise descriptions of speech
rhythms (e.g., Lehiste, 1977; Remez, Rubin, Bemns, Pardo, &
Lang, 1994). Yet, in both domains, such variations are often well
placed and meaningful. For example, at two points in this event,
tempo systematically decreases; this so-called “phrase final length-
ening” is a typical marker of phrase endings both in music and in
speech (e.g., Lehiste, 1977; Palmer, 1989). People can follow such
changes, often anticipating a rate change or a significant rhythmic
deviation. Furthermore, despite such temporal fluctuations, people
respond to underlying invariants, recognizing rhythm and meter.
An aspect of this puzzle, then, is that people seem capable of

! Relative IOl is performed IOl divided by notated IOI, normalized for
average rate (1.0 on the ordinate indicates mean beat duration).
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Figure 1.

A notated melodic phrase (A) performed (B) on a computer-monitored piano (see Large, Palmer, &

Pollack, 1995). Onset times and amplitudes of successive pitches produced in B are selected to express the
external rhythm as an onset sequence in C. Shown is an interonset interval (IOI), the interval of time from one
onset to the next. D: Rate (tempo) as relative I0I; that is, each performed IOI (C) is divided by the corresponding
notated IOl and normalized such that 1.00 represents average rate.

comprehending a stable underlying temporal structure while at the
same time responding meaningfully and adaptively to changing
aspects of the time pattern.

We suggest that the answer to this puzzle lies in understanding how
people attend to events that have extent in time. Relatively little is
known about how people accomplish these feats, in part because the
dynamics of attention are not well understood. Moment-to-moment
attending to events in time has not played a significant role in most
contemporary attention theories, which tend to concentrate on search
responses to static visual arrays. Consequently, the hallmark of at-
tending—selectivity—often refers to a selectivity of visual attention
in space postulated to derive from a spatial spotlight (Tsal, 1983), an
adjustable focus lens (Ericksen & St. James, 1986), a spatial gradient
(LaBerge, 1995), feature integrating glue (A. M. Treisman & Gelade,
1980), or object files (A. Treisman, 1992), among other things. But if
William James (1961) was correct in stating that “No one can possibly

attend continuously to an object that does not change” (p. 92), it is
imperative to consider how people respond when the object of atten-
tion changes in time, a point emphasized by recent research on
attentional capture (e.g., Jonides & Yantis, 1988; Yantis, 1992).

In this article, we offer a theory about how people attend to
events that change over time. Our theory begins with audition
rather than vision because a most persuasive case for positing
dynamic attending comes when we consider attending to speech
and music. In auditory domains it is evident, as shown later, that
attentional selectivity operates in the time dimension. In the end,
however, we claim that our framework is a general one, applying
to vision as well as to audition.

We take the time structure of events as a point of departure by
assuming that, in acoustic patterns, it can capture and maintain
attending. We ask two questions: How does event structure guide
attending, selectively enhancing attentional focus at certain ex-



DYNAMICS OF ATTENDING 121

pected points in time? and How does attending adapt when event
structure begins to change, such that relevant information occurs at
unexpected points in time? To answer these questions, we appeal
to the idea of attending rhythms that entrain to external events.
Entrainment permits selective targeting of attention to expected
points (Jones, 1976; Jones & Boltz, 1989; Large, 1994; Large &
Kolen, 1995). Attending rhythms comprise recurrent pulses of
attentional energy that facilitate a listener’s responses not only to
expected information but also to temporally unexpected informa-
tion (Large, 1994).

In the remainder of the introduction, we briefly consider ap-
proaches pertinent to two aspects of our theory, namely represen-
tational approaches to event time structure and contemporary
attending theories. We then introduce a dynamic attending model
that builds on the notions of expectancy and entrainment to de-
scribe real-time attentional tracking of time-varying events, fol-
lowed by an assessment of the model using simulations of data
from three listening experiments. Finally, we consider broader
implications of this approach.

Temporal Structure of Events and the Role of Attention

Our theory addresses issues that relate to two psychological
domains. First, because we assign an important role to the tempo-
ral structure of events, research on representation of sequence time
structure is relevant. Second, because we are concerned with the
activity of attending, the other domain includes research on atten-
tion, much of which involves vision.

Theories of Temporal Structure

Research on representation of time is concerned with how
people represent temporal relations among elements composing a
serial event (such as a word, a phrase, or a melody). Most of these
theories are memory theories designed to explain how a completed
event is recalled. Statistical theories of temporal structure rely on
statistical description of a sequence of IOIs to explain the nature of
memory codes. Beat-based theories of temporal structure rely on
clock-timed beats induced from an event’s rhythm as a basis for
encoding an event’s time structure.

Statistical Theories

Several recent models propose that encoding temporal se-
quences involves formation of memory traces for (arbitrary) time
intervals (Drake & Botte, 1993; Keele, Nicoletti, Ivry, & Pokorny,
1989; Sorkin, 1990). These models continue a long-standing tra-
dition that expresses the duration of single time intervals in terms
of counts of random clock pulses that can fill any arbitrary time
interval (e.g., Allan, 1979; Creelman, 1962; Getty, 1975, 1976,
Killeen & Weiss, 1987; M. Treisman, 1963). Experimental support
often comes from time discrimination tasks, because small tem-
poral just-noticeable differences (JNDs) can reinforce the claim
that a particular time interval has been encoded. For example, the
average Weber model (Monahan & Hirsh, 1990) and the muiltiple
look model (Drake & Botte, 1993) summarize sequence time
structure in terms of a mean IOl that affords a referent time
interval, ¢, for detecting temporal perturbations in a time discrim-

ination task. In the average Weber model, the mean IOl involves
only intervals immediately surrounding a to-be-detected time
change, Az, whereas, in the multiple look model, the referent ¢ is
based on the mean of all IOIs in a sequence. The latter model
explains memory for tempo (rate) in terms of this mean interval.
The strength of the memory trace depends on sequence variability
(e.g., 101 standard error). As variability increases, the strength of
the memory code decreases, leading to poorer temporal acuity (see
also Kecle et al., 1989). Drake and Botte (1993) demonstrated the
power of this model in experiments designed to test tempo dis-
crimination between two (otherwise identical) sequences. Perfor-
mance worsened as the standard error of sequence IOIs increased.

The rationale of the multiple look model is compelling and general.
If applied to time (rather than tempo) discrimination within se-
quences, for instance, it implies that the mean of an IOI sequence
affords a referent time interval, #, for detecting a single time change
embedded within the sequence; moreover, this representation should
degrade as IOl variability increases. Thus, it would appear that a
statistical model may offer a tenable approach for explaining re-
sponses to temporal flexibility in naturally timed events, as in Fig-
ure 1. But caution is required on two fronts. First, such models
implicitly assume stationarity, namely that statistical properties are
fixed over time.”> However, for naturally timed sequences, in which
changes in global and local structure abound, there is reason to
suspect the viability of a statistical approach. Second, statistical ap-
proaches do not fully address time discrimination for rhythmically
structured sequences, an issue we take up next.

Beat-Based Theories

Statistical structure may be sufficient to explain sensitivity to
rate changes for some sequences, but for more rhythmically com-
plex sequences, the predictions of interval-based statistical models
begin to break down. Consider an experiment of Jones and Yee
(1997). They created four different rhythmical sequences by vary-
ing timings of tones with different amplitudes (loud or soft) and
temporal separations (short or long IOIs), as shown in Figure 2.
Two patterns, a regular rhythmical (RR) and a regular (R) one,
were generated from a regular implied beat; two others (irregular
rhythmical {IR] and irregular {I]) contained some irregular beats.
However, variability in interval time structure did not directly
covary with regularity because the more rhythmical patterns (RR
and IR) were more variable than their less obviously patterned
counterparts (R and I). If sequences with greater IOI variability
convey to listeners a fuzzy memory trace of a referent ¢, then the
latter two sequences should be more economically encoded than
the former. Furthermore, listeners should be better in determining
the serial locus of an embedded time change (i.e., a perturbation of
the rhythm) with R and I sequences than with RR and IR se-
quences. This did not occur. As proportion correct (PC) scores in
Figure 2 indicate, even listeners with no musical training were

2 A stationary time sequence is one that can be summarized at any point
by fixed statistical properties of 1OIs, such as mean, variance, and covari-
ance of these time intervals. Nonstationary patterns are ones with system-
atic trends, such as gradual rate increases or decreases or certain local IOI
patternings that are not described by such statistics.
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Figure 2. Experimental patterns of Jones and Yee (1997) shown with respective standard errors (SE) of
interonset intervals (IOIs) and proportion correct (PC) of time detection responses (far right columns). A and B:
Regular patterns. C and D: Irregular patterns. Amplitudes are scaled to the range [0, 1].

better in this task with RR and R than with IR and I sequences.
These findings suggest that statistical structure alone cannot ex-
plain discrimination responses to rhythmic patterns.

Models specifically designed to explain perception and produc-
tion of rhythmic patterns have proposed differential encoding of
successive time intervals in a sequence (e.g., Lerdahl & Jackend-
off, 1983; Longuet-Higgins, 1987; Povel, 1981; Povel & Essens,
1985; Simon & Sumner, 1968). Perhaps the most influential is
Povel’s clock model. It is a beat-based model: A listener econom-
ically encodes time intervals when they form a thythm sufficient to
induce a fixed beat. The beat is mentally represented as a clock
grid. The grid supplies the best-fitting beat for a pattern’s accent
structure and thus determines its memory code; shorter codes
correspond to more accurately recalled rhythms. Povel and Es-
sens’s (1985) experiments confirmed the model’s prediction that
time intervals within sequences containing equidistant (isochro-
nous) accents are reproduced best. Thus, Povel’s clock model
appears more appropriate than a statistical model for the Jones and
Yee data (cf. Figure 2). But this prediction comes at a cost. The
fixed beat structure of the clock model is not robust even to small
perturbations in a rhythmic pattern. Although it correctly predicts
that an isochronous pattern is most efficiently encoded, introduc-
tion of even modest amounts of temporal jitter would cause most
onsets to fall off the beat; consequently, encoding would com-

pletely break down. Systematic trends in sequence rate are more
problematic. As shown later, these outcomes do not correspond to
listeners’ responses.

In brief, both statistical and beat-based theories have been
influential in explaining representations of temporal information.
Some version of a statistical model seems required to explain
responses to temporally variable sequences, whereas some version
of a beat-based model seems more appropriate in explaining re-
sponses to rhythmically structured events. Yet, this returns us to
our original puzzle. When is a difference between two intervals so
large as to induce a sense of rhythm or meter, and when is it small
enough to be treated as merely a perturbation of an isochronous
sequence? What, if anything, does this have to do with responding
to systematic changes in the temporal structure of natural se-
quences? To address these questions, our approach incorporates
some features of both statistical and beat-based approaches. But it
involves more than simply the memory of temporal structure: It
involves active attending.

Attention: The Role of Time

We aim to describe attention to activities that unfold in time
(i.e., attention to events rather than to objects). However, a ma-
jority of current research is aimed at understanding visual attention
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to objects in space. This research has relevance here because of its
emphasis on real-time attentional control. Thus, we first present a
brief sketch of pertinent constructs in visual attention to objects.
Then we describe dynamic attentional approaches geared to track-
ing events.

Visual Attention

Current visual attention theories address attentional control,
which in many tasks involves some combination of a long-term,
goal-oriented attentional process and a transient, stimulus-
driven mechanism (e.g., Egeth & Yantis, 1997). The goal-
oriented mechanism reflects expectancy and attentional set; it is
concerned with deliberate changes in focal attending (e.g., Folk,
Remington, & Johnston, 1992). For instance, an individual may
react faster to an object in an attended-to location or may be
successfully instructed to ignore certain objects in a forthcom-
ing display. By contrast, the stimulus-driven mechanism re-
flects fast (some claim automatic) attentional shifts, usually
caused by a single salient feature or an abrupt display change.
For instance, the abrupt onset of a nontarget object may pro-
voke a rapid attentional shift to it and away from a target object.
This phenomenon is known as attentional capture (Jonides &
Yantis, 1988; Yantis & Hillstrom, 1994).

In visual attention, both control mechanisms speak to selectiv-
ity. There is accumulating evidence that attentional selectivity is
connected to the allocation of resources to objects rather than
merely to spatial locations (e.g., Duncan, 1984; Rock & Guttman,
1981). This has been a contentious issue, one complicated by the
fact that both spatial location and spatial relationships are usually
confounded with object form; both space- and object-based pro-
cesses are probably involved in the maintenance of attentional
focus, as current thinking suggests (e.g., Hummel & Biederman,
1992; Logan, 1996). Thus, an object’s global structure provides
nesting within its spatial boundaries; moreover, within these
boundaries, nested subparts, textures, and so forth are relationally
configured in space. We distinguish objects, which are patterns in
two-dimensional or three-dimensional space, from events, which
are patterns in time.

Constructs useful in visual attention, such as expectancy
(conveyed by attentional set), attentional capture (conveyed by
a sudden or unexpected change), and attentional focus (selec-
tivity in space), are also useful, in altered form, in our frame-
work. Our interpretations are shaped by the inclusion of the
time dimension as a source of structure that governs attending
to events. In this approach to attending, we identify long-term
and transient aspects of attentional control that determine se-
lectivity in time; both processes are influenced by the structure
of events in time. Thus, temporally regular patterns guide
attending in a goal-oriented way that is manifested by expec-
tancies about the “when” of forthcoming items. By contrast,
temporally irregular patterns offer various unexpected items
that provoke rapid shifts in the temporal locus of attention. The
former parallels a long-term expectancy process, and the latter
parallels transient attentional capture. In both, attention in time
is responsive to structure in time.

Dynamic Attending

The dynamic attending approach (Jones, 1976; Jones & Boltz,
1989} shares with visual attention theories an emphasis on the
immediacy of attending, the role of expectancy, and focal attend-
ing shifts, among other things. At the same time, its emphasis on
control of attention by an event’s rhythm strongly links it to
representational theories of temporal structure. But dynamic at-
tending theory differs from both of these accounts in its reliance on
an entrainment hypothesis. This hypothesis rests on two assump-
tions. First, internal oscillations, termed attending rhythms, gen-
erate expectancies that enable anticipation of future aspects of an
event. Second, the external event’s rhythm drives attending
thythms, such that attending rhythms entrain to the external
rhythm. Thus, an event’s temporal structure is salient and useful to
an attender.

Recent models pursue the idea of temporal expectancies,
instantiated as the behavior of internal rhythmic processes (e.g.,
Desain, 1992; Large, 1994; Large & Kolen, 1995; McAuley,
1994, 1995). For example, Large described the process of
tracking temporally complex, natural events (music and speech
thythms) as nonlinear oscillations that synchronize to event
periodicities at various time scales. A complex pattern of ex-
pectancies results when several oscillators entrain both to the
thythm of the external event and with one another (Large,
1994). These ideas are further developed later. McAuley (1994,
1995) also used entrainable oscillators. He advanced the idea of
a preferred oscillator period, along with period decay, to ex-
plain tempo discrimination. His model offers a dynamic alter-
native to the multiple look model. A characteristic tempo is
expressed in an adaptive harmonic oscillator with a preferred
period. As with the Large model, this model differs from
memory coding models in that the oscillator adjusts to new
rates, adapting its characteristic period in real time.

Finally, several of these models have formalized the idea of
attentional energy originally suggested by Jones (1976). This
continues a tradition of associating attention with energy dating
at least from McDougall (1911). Attentional energy has been
variously depicted (e.g., Berlyne, 1974; Easterbrook, 1959;
Kahneman, 1973; Sanders, 1986; for reviews, see Neumann,
1996; van der Molen, 1996). However, our use of this term is
more specific than most. Here energy provides a periodic at-
tentional pulse that is targeted by an internal rhythm. In other
words, in the present context, energy differs from the nonspe-
cific resource concept often used to explain attentional selec-
tivity (e.g., Kahneman, 1973).

In sum, recent developments in the application of dynamical
systems to complex rhythmic patterns make it possible to extend
and formalize hypotheses about the dynamics of attending vis-
&-vis event time structure. This is the goal of the next section.

A Model of Attending Dynamics

As indicated, the dynamic attending framework postulates two
entities: external rhythms, which are created by distal events, and
internal rhythms, which actively generate temporal expectancies. It
also postulates a coordinated relationship between these two enti-
ties that arises as a result of entrainment. In this section, we build
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on these ideas to develop a model of attentional dynamics that
generates predictions about people’s sensitivity to interval time
properties of an event, specifically, predictions about time judg-
ments that are evaluated later.

External Rhythms

Our concept of an external rhythm conforms to conventions
established for describing time patterns of music and language
(Cooper & Meyer, 1960; Cutler & Mehler, 1993; Lehiste, 1977;
Liberman, 1975; Lerdahl & Jackendoff, 1983; Yeston, 1976).
Used in this sense, “rhythm” refers to a wide variety of explicitly
nonisochronous, as well as isochronous, time structures. We as-
sume that an external rhythm involves a sequence of temporally
localized onsets, defining a sequence of time intervals that are
projected into the flow by some external event.

The acoustic sequence of Figure 1B is a musical event that
conveys information about the temporally localized onset of each
note as it is created by the pianist’s finger impacts on a keyboard.
As an external rhythm, such an event is represented by a sequence
of discrete onsets stripped of pitch information as in Figure 1C.
Within such sequences, explicitly rthythmical patterns can appear
in the form of recurrent arrangements of certain IOIs (e.g., long—
short-short-long-short—short), thereby implying periodicity on
multiple time scales. However, such periodic components rarely
remain constant; rather, the phase and period of any component
may change systematically over time. The temporal nuances and
rate changes that contribute to such perturbations are not noise;
they are meaningful, and often communicative, variations on un-
derlying rhythmic forms.

Several different external rhythms appear in Figure 3, each
illustrating a perturbation of an underlying rhythmic form.
Below each rhythm, a corresponding rate curve is shown. Panel
A displays an otherwise isochronous rhythm in which the length
of a single interval (the fifth IOI) has been perturbed by a fixed
amount (15%). Panel B illustrates a similar rhythm with many
random phase perturbations (i.e., every interval is perturbed by
a small random amount). In Panel C, the isochronous rhythm
receives a perturbation that results in an abrupt change of
sequence rate (15%) S s into the pattern. Finally, the rhythm of
Panel D differs from the preceding ones in that it is based on
two periodicities. One periodic component, P, is marked by all
tone onsets (500-ms mean period), and the other, P,, is marked
only by louder onsets (1,000-ms period). The disturbance is
applied only to P,; P, is strictly isochronous, whereas P, is
variable (with random jitter, SD = 50 ms, applied only to soft
tone onsets). These rhythms illustrate the kinds of temporal
fluctuations that characterize natural events. Any successful
approach to the real-time deployment of attention must be able
to explain attentional behaviors in events such as these (and
those of Figures 1 and 2). Accordingly, in this article, we focus
on such acoustic rhythms.

Attending Rhythms

Attending rhythms are the building blocks of our theory. This
usage of the term rhythm contrasts with that applied to an external
rhythm, in which many periodic components are considered. Our

concept of an internal thythm conforms to conventions established
in biology, where rhythm commonly refers to a single periodic
process carried out by a biological oscillation (Glass & Mackey,
1988; Winfree, 1980). The first two parts of this section describe,
respectively, different aspects of a single attentional rhythm: a
self-sustaining oscillation and an energy pulse. The self-sustaining
oscillation models the generation of temporal expectancies; the
energy pulse captures focus of attention and facilitates task-
dependent model predictions. A simplified overview of these two
basic aspects of a single attentional rhythm appears in Figure 4.
The third part of this section generalizes these ideas to multiple
attending rhythms.

Attending Rhythms as Self-Sustaining Oscillations

A self-sustaining oscillation has two important features that
make it appropriate for modeling the basic process of atten-
tional dynamics. First, it generates periodic activity, an activity
that we refer to as an expectation. Expectations are similar to
the ticks of a clock, with the important exception that an
expectation is an active temporal anticipation, not a grid point
in a memory code (cf. Povel & Essens, 1985). Second, when
coupled to an external rhythm, a self-sustaining oscillation may
entrain, or synchronize, to that rhythm. Therefore, unlike a
fixed clock, synchronization between an attending rhythm and
an external rhythm is stable, meaning it is robust to both
random and nonrandom perturbations of the external rhythm
(cf. Figure 3). Finally, an attentional rhythm may adapt its
period in response to systematic rate changes in an external
rhythm. Thus, an attending rhythm adapts to meaningful tem-
poral fluctuations found in everyday events.

A self-sustaining oscillation is a dynamic system that exhibits,
in the limit, a stable cycle, termed a limir cycle. Conceptually, the
limit cycle describes the periodic generation of a temporal expec-
tation that often intuitively accompanies attending to temporally
patterned events (cf. Figure 4). An expectation about “when” an
onset should occur is described in terms of a single variable, phase
&(1), which is the position of the oscillation around the limit cycle
at time ¢. In dynamical systems terminology, phase is one of three
state variables in our model; each possible value of phase within a
cycle corresponds to a distinct state, so the state space is the space
of possible phases. The time required to complete one cycle
determines the period, p, and the phase at time t, —p/2 <t =
pl2, is denoted by ¢(r) = t/p. According to this definition, phase
is a continuous variable ranging from —0.5 to 0.5, as illustrated in
Figure 5.

If we designate the time at which an onset is expected to
occur as ¢, and define ¢(z,) as 0, then we have the following
relation:

(t) [ 2 p
t) = — =<
¢ o -y =t<i

1)

Thus, an expectancy corresponds to zero phase. Furthermore,
when an onset occurs at time ¢, its relationship to an ongoing
attentional rhythm is summarized by the phase of the attentional
rhythm at that time, ¢(¢), calculated according to Equation 1.
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Expectation
Attentional Energy
Limit Cycle
Self-Sustaining Oscillation Energy Pulse Attending Rhythm

Figure 4. Schematic overview of a single attending rhythm shown as a function of two model components: a
self-sustaining oscillation and an energy pulse. Attentional targeting is suggested by mapping a given point on

the limit cycle to the modal point of the energy pulse.

Thus, ¢(#), or simply ¢, captures the disparity between the
onset and the expectation. Because of the way we have defined
phase in Equation 1, negative phases correspond to onsets that
arrive early relative to expectations, whereas positive phases
characterize onsets that arrive late (Figure S). The term relative
phase refers to the time of an onset relative to the phase of the
attending rhythm.

Because external rhythms can be expressed as onset sequences,
it is possible to determine the relative phase for the next onset,
&,,.. 1, from the phase at the current onset, ¢,,; the interval of time
to the next onset, ¢,,,, — ¢,; and the period, p:

Ly

bpiy = G, + tnﬂT (mod_q5051). @
Equation 2 is called a circle map because it maps points on the
circle (¢,) to new points on the circle (¢, ;; see Figure 5).> The
parameter p is the period of the oscillation. Equation 2 expresses
one possible type of relationship between a self-sustaining oscil-
lation and an external rhythm, one in which the oscillation acts as
an autonomous referent, or clock, generating ticks (i.e., expecta-
tions) at regular intervals independently of the external rhythm.
The circle map describes the phase of this clock at which onsets
appear in the external rhythm.

Expectations are most useful when they are synchronous with
onsets in an external rhythm. In this case, the phase of each onset
in a sequence is ¢, = 0, indicating that each onset occurs when
expected.® It is possible to model a simple form of synchronization
using Equation 2 by assuming ¢, ,, — ¢, = p, for all n, and by
starting the internal clock simultaneously with the external rhythm,
at ¢, = 0. This is similar to two watches that keep perfect time;

once set to the same time, they remain synchronized forever.
However, this type of synchronization is fragile in that it can be
perturbed by disruptions of the external rhythm. This is illustrated
in Panels A-C of Figure 6, where relative phase for a two-rhythm
system is plotted (the external rhythms correspond to the onset
sequences of Figure 3, Panels A-C). To continue with the watch
metaphor, imagine that one watch (corresponding to the external
rhythm) is dropped and skips part of one cycle. The resultant series
of ticks would correspond to the onset sequence of Figure 3A.
Relative phase (Figure 6A) is perturbed by the lengthening of this
one TOI (at ¢,,..,). According to the second watch (corresponding to
the internal clock), not only is the single tick at z,.,, “late,” but all
ticks following ¢, are late as well (i.e., ¢ > 0). The system is still
phase locked, but synchrony is destroyed because the second
watch continues unchanged. Iteration of Equation 2 for a few steps
will verify this. A more severe situation arises if the blow to the
first watch loosens the works just enough that the length of each
cycle differs from the mean by a small random amount, as shown
in Figure 3B. Continual random perturbations cause phase drift, as
illustrated in Figure 6B. In this case, no phase relationship is
stable. Finally, if damage to the first watch creates a systematic
change in rate (as in Figure 3C), then the difference in period

3 The expression (mod_q 5 o 51) maps the real line (time) onto the circle
(phase) by taking the remainder after division by 1 and then remapping the
interval (0.5, 1) to the interval (—0.5, 0).

4 The subscript * is used when the system is in equilibrium; thus, ¢, =
¢,+1 = ¢4. Synchronization is a special form of phase locking. In a
phase-locked system, phase is constant (i.e., ¢, = c, but ¢ is not neces-
sarily zero).
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Figure 5. Relative phase and the circle map. Time, 7, is mapped onto phase, ¢, by Equation 1 such that the
expected onset time, ¢ = £, is transformed to an expected phase ¢ = 0. Circle maps such as Equations 2 and 3
work in relative phase directly, mapping points on the circle to new points on the circle (¢, — ¢, ,).

between the two watches causes a relative phase wrap, as shown in exerts a-force that pulls the two rhythms toward a synchronous
Figure 6C: After a time, the first watch will be one cycle behind relationship. Equation 2 models the relationship of two thythms that
the second, then two, and so on. are uncoupled, but it does not model the force exerted by an external

The process by which a system returns to synchrony after a per- thythm on an attentional rhythm. This force can be modeled with the
turbation is called entrainment. It arises in coupled systems: Coupling addition of a coupling term, F(¢,), to Equation 2:

Uncoupled Oscillation (Equation 2)
A) One Phase Perturbation B) Many Phase Perturbations ) Rate Change
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Figure 6. A-C: Responses of an uncoupled oscillator to the fluctuating external rhythms of Figure 3, A-C, .
respectively, in terms of relative phase (Equation 2). D-F: Responses of a coupled oscillator (Equation 3) to the
same stimulus sequences. Single perturbations (pert) occur at time, t,.,.
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Gpir =&, + m—lpj_tﬂ - 7)¢F(d’n) (mOd—o.s,o.sl), (3)

i
where F(¢$) = P sin 2m¢. The new parameter in this equation,

74, Tepresents coupling strength. Equation 3 is called a phase
attractive circle map (cf. Kelso, deGuzman, & Holroyd, 1990)
because there is an attractor in relative phase created by the
addition of the coupling term. It is called an attractor because the
system is drawn toward it by coupling. The attractor is called a
stable state because it is resistant to perturbations. This is illus-
trated in Figure 7, where the coupling term is plotted. The location
and stability of the attractor depend on the parameters, p and 7.
Synchrony (¢, = 0) is a stable attractor state for this system when
t,+, — t, = p, for all n, as long as coupling strength assumes a
value in the range 0 < 7, =< 2 (see Appendix A). Coupling
strength captures the amount of force exerted on the attentional
rhythm and determines, among other factors, the speed with which
the coupled system relaxes to the attractor. Panels D and E of
Figure 6 show the advantage (relative to Equation 2) of coupling
the attending rhythm to the external rhythms of Figure 3 (Panels A
and B). After a single phase perturbation (Figure 3A), the system
quickly returns to synchrony (Figure 6D). In response to random
variability in the external rhythm (Figure 3B), the system remains
near the attractor at all times (Figure 6E). We refer to this loose
form of synchrony as phase coordination.

Phase coupling alone, however, is not sufficient to model phase
synchrony in the presence of systematic rate changes (Figure 3C).
As shown in Figure 6F, when 7, — t, > p an attractor still
exists, but its phase changes (see Appendix A); thus, phase syn-
chrony is destroyed. Intuitively, if the period of the oscillation is

shorter than the period of the external rhythm, then onsets will
always appear later than expected. To maintain phase synchrony,
it is necessary that the attentional rhythm be capable of tracking
time-varying events such as these (cf. Large, 1994; Large & Kolen,
1995; McAuley, 1995). To accomplish this, we allow the period of
the internal oscillation to adjust in much the same way as phase
does:

Dr+i :Pn+pon(¢n) (4)

The response of the phase-coupled and period-coupled oscil-
lation to the external rhythms of Panels A—C of Figure 3 is
illustrated in Panels A—C, respectively, of Figure 8. Panel C, in
particular, illustrates the advantage of period adaptation when
the external rhythm undergoes a change in rate. After a rate
change, relative phase relaxes toward synchrony while the
oscillation period” adapts to the new period of the external
rhythm. In dynamical systems terms, period is promoted from a
parameter (Equation 2) to a state variable (Equation 4). Assum-
ing an external rhythm with fixed period ¢ and an attending
rhythm with initial period, p,, close to g, the attractor for this
two-dimensional system is ¢, = 0; p, = ¢q. The period
adaptation rate, 7, is analogous to coupling strength in Equa-
tion 3; together these parameters determine the rate of approach
to the attractor.

Together, the concepts of self-sustained oscillation, phase en-
trainment, and period adaptation describe how an attending rthythm
can generate periodic expectations that are well coordinated with
an external thythm amid the fluctuations that are characteristic of
natural events. The concept of a stable attractor state implies the
existence of a special sustaining relationship between internal and

Phase Coupling

0'2 N ................

0.1 AT e N

attractor

-0.5 -0.256
Early Onsets

0 0.25 0.5
¢ Late Onsets

Figure 7. Phase coupling, F($) = 1/27 sin 27, shown as a function of ¢ within a single attending rhythm
cycle. Arrows indicate that the system moves toward the attractor, ¢ = 0.
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Both Phase and Period Coupled (Equations 3 & 4)
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Figure 8. Responses of an adaptive oscillation (A~C) to the three external rhythms of Figure 3, A-C.
Oscillator responses in all cases are based on the two-dimensional system of Equation (Eq) 3 and Equation 4
(i.e., coupling of both phase and period). Compare with predictions shown in Figure 6, A-C (from
Equation 2 alone), and Figure 6, A~C (from Equation 3 alone). IOl = interonset interval; pert =

perturbation.

external rhythms. This relationship continually “hovers” in the
background while the attending rhythm adjusts to momentary
event changes. The attractor exerts long-term control over attend-
ing, summarizing the influence of a simple, underlying rhythmic
form. Alternatively, when phase perturbations or rate changes
occur in the external rhythm, the attending rhythm adapts with
transient shifts of attention that constitute a form of attentional
capture.

Attending Rhythms and Attentional Focus

The model, as we have thus far described it, has one important
shortcoming. It associates an expectation with a single point in
time and, therefore, with a single point in the state space of the
coupled system. It is evident that this is not appropriate for
situations in which natural rhythmic fluctuations come into play.
That is, even when coupling does a good job of maintaining
coordination (Figure 8B, for example), none of the onsets occur
precisely at this expectation point. It is necessary to quantify
expectancy violations to precisely predict responses to unexpected
as well as expected onsets. Therefore, we move from the informal
notion of expectation to a model of the allocation of attentional
energy within each cycle of an attentional rhythm. We develop the
notion of focus of attention, embodied as a third state variable that
describes concentration of attentional energy within each cycle.

Adaptation of this state variable over time models changes in
attentional focus that depend on context. Attentional focus accom-
modates effects of temporal expectancies on overt responding,
enabling predictions of judgments about both expected and unex-
pected happenings.

We begin with the idea of a “pulse” of attentional energy,
modeled as a periodic probability density function. The pulse is
linked to the dynamical system of Equations 3 and 4 through the
phase of an attending rhythm (the periodic variable, ¢). The
variable k captures attentional focus. The pulse has both locus and
extension in time. Phase (¢ = 0) determines the locus of a pulise,
whereas focus determines its extent. The pulse is defined as
follows:

1
flp, k) = m exp k cos 27(¢), 5)

where I,(x) denotes the modified Bessel function of the first
kind of order zero. Equation 5 corresponds to the periodic
density first introduced by von Mises to describe statistical
inference on the circle (see Appendix B). For fixed x > 0,
energy varies as a function of ¢, with larger absolute values of
¢ corresponding to less attentional energy. Figure 9A illustrates
how focus determines the distribution of attentional energy over
one cycle. The mode of the pulse is at ¢ = O (the expectation
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Figure 9. The attentional pulse. A: Distribution of energy (a von Mises distribution; Equation 5) as a function
of ¢ for three different focus («) values. Larger k values correspond to a greater concentration of energy about
the expected phase, ¢ = 0. B: How the probability density evolves over time as x adapts in response to an
external rhythm that contains many random perturbations (i.e., Figure 3B). Values between discrete onsets are
interpolated according to Equation 5; circles show where onsets fall relative to the evolving density. C:
Comparison of a histogram of observed relative phases and a predicted (summary) density based on the final
value of k = 7.97. The observed distribution of relative phases (r = 0.937; see Figure 10A) is nicely

summarized by this density (s = 0.933).

point), and the antimode is at 0.5. The pulse contributes an
expectancy region about the mode where attentional energy is
nonzero. It reflects the idea that “something is anticipated
around this point in time.” Figure 9A indicates that, as
increases, the pulse narrows concentrating energy near the
mode, modeling a more focused temporal expectation. As «
decreases, the pulse widens, reflecting greater uncertainty about
external happenings. When « = 0, the pulse function is flat,
indicating a uniform dispersion of attentional energy.

The attentional pulse permits quantification of attentional re-
sponses to variability in an external rhythm. Unlike the multiple
look model, however, which treats IOI as the random variable, our

model treats relative phase, ¢, as the random variable (see also
McAuley & Kidd, 1998). Attentional focus increases (i.e., the
pulse narrows) as synchronization improves and decreases (the
pulse widens) as synchronization degrades. This implies that at-
tentional focus comes to reflect the accumulated effect of expec-
tancy violations rather than sequence variability. Figure 9B illus-
trates how the shape of the attentional pulse might evolve over
several cycles in response to the randomly perturbed rhythm of
Figure 3B, through adaptation of attentional focus, k (described
subsequently). The pulse begins flat and then narrows to reflect
degree of synchronization.

Adaptation of attentional focus is incorporated into the model by
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Figure 10. Response of an attentional rhythm to a stimulus sequence containing many random perturbations.
(i.e., Figure 3B). The full model comprises three state variables: phase, &; period, p; and focus, k. Predicted
changes in these variables over time (for this rhythm) are shown, respectively, in A, B, and C. 101 = interonset

interval.

a method similar to finding the maximum-likelihood estimate of k
for the von Mises distribution (Batschelet, 1981). The maximum-
likelihood estimate is given by the solution to the equation

Alk) =r, (6)

where r is a statistic, called mean vector length (Appendix B), that
can be used to measure degree of synchronization (Goldberg &
Brown, 1969) by gauging variability in relative phase. It ranges
from O to 1, where 0 indicates no synchronization and 1 indicates
complete synchronization. A is a monotonic function of k such
that, as r goes from O to 1, k goes from O to «. Because the
function A cannot be inverted analytically, the corresponding value
of « is found numerically (or by table lookup) for a given estimate
of r. Thus, the problem of adapting attentional focus reduces to
finding an incremental approximation to r, which we call synchro-
nization strength, s (see Appendix B).

=5, — n,(s, — cos 27¢,)

Sn+1
and
@)

Equation 7 describes real-time adaptation of attentional focus.
Intuitively, it states that the measure of synchronization strength on
the next onset (s,,, ;) depends on the current measure (s,,) as well
as the phase of the current onset (i.c., the cos term); k is a function
of synchronization strength such that as s,, increases, so does k.
Equation 7 is derived in Appendix B. Two parameters are involved
in adaptation of x. The adaptation rate, n,, 0 = 7, = 1,

Kns1 = A_I[H(b’ Spe1)]

determines how quickly attentional focus changes. If i, = 1, each
estimate of « is based solely on the phase of the current onset; if
mn, < 1, focus adapts more slowly because previous context is
taken into account. The auxiliary parameter b places a limit on the
maximum value of .k through the hard limit function H(b, s)
(Appendix B). It determines an upper limit on attentional focus
and, hence, specifies how narrow a pulse can become.®

Figure 10 depicts adaptation of phase, period, and focus in
response to a stationary external rhythm in which small random
deviations perturb the length of each cycle (Figure 3B). Adaptation
of attentional focus depends on strength of synchronization of the
attending rhythm to the external rhythm. Panels A and B of
Figure 10, respectively, show that phase and period adjust to
maintain coordination with the external rhythm. Panel C shows
that attentional focus adapts to reflect the resultant distribution of
relative phase values. By comparing Figure 10C with Figure 9B,
one can observe that as focus increases, the width of the attentional
pulse decreases, whereas changes in phase and period determine
slight shifts in the temporal locus of the attentional pulse. Atten-
tional focus reaches an asymptotic value of k = 7.97 (s = 0.933).
Comparison of this value with a statistical estimate of synchroni-
zation strength (r = 0.937) verifies that incremental adaptation of
attentional focus captures the quality of coordination between
internal and external rhythms. A predicted density function (Equa-

5 The value of b was held fixed at 0.95 for all simulations described in
this article. This value corresponded to an upper limit for attentional focus
of k = 10.27.
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tion 5), based on this value of «, is compared with a relative phase
histogram in Figure 9C. It fits the empirical distribution of ob-
served relative phase values, reflecting the quality of synchroni-
zation between the attending rhythm and the external thythm.
The attentional pulse construct complements that of a limit cycle
oscillation in offering probabilistic quantification of people’s judg-
ments about unexpected as well as expected aspects of an external
thythm. Attentional focus allows one to quantify time-change
noticeability in terms of the size of an expectancy violation relative
to an observed distribution of relative phase: Large deviations
from expectancy (I¢} > 0) are more noticeable than small ones,
and a given deviation is more likely to be noticed when attention
is highly focused (large ) than when it is broadly focused (small
). In other words, noticeability of any perturbation depends on
both the temporal locus and width of an attentional pulse. Finally,
the probability of noticing a time change is quantified as area
under the density (pulse) function from the mode (¢ = 0) to the
relative phase of a perturbed onset. Following this rationale, Ap-
pendix B derives response probabilities for two different tasks.
To briefly summarize, the full model of a single attending
rhythm reveals both long-term and short-term control of dynamic
attending. It is grounded in the behavior of three state variables:
phase, period, and focus. Near equilibrium phase is coordinated
with the external rhythm, period approximates a pattern’s mean
101, and focus reflects synchronization quality. This attractor state
models goal-oriented attentional control in that it represents the
long-term behavior of the attending rhythm. In addition, the atten-
tional rhythm reacts to momentary changes in the external rhythm
with a speed determined by three parameters that correspond,
respectively, to the three state variables; they are phase coupling
strength, period adaptation rate, and focus adaptation rate. The
response to these changes is transient, representing a short-term
control of attending by event structure; it constitutes a form of
attentional capture. Together, the state variables and model param-
eters describe targeting of attentional pulses; in turn, a pulse
summarizes one’s expectations about an unfolding rhythm and
allows quantitative predictions about responses to the rhythm.

Multiple Attending Rhythms

Events in the world typically give rise to complex rhythms
containing multiple pseudoperiodicities. The patterns of Figure 1,
Figure 2, and Figure 3D, for instance, exhibit characteristic rhyth-
mic forms. Rhythmic forms involve ratio relationships among the
phases and periods of temporal components. We assume that, in
attending to complex rhythms, listeners enlist multiple attending
rhythms that track distinct pseudoperiodic components. Accord-
ingly, in this section we generalize the notions of limit cycle
oscillation and attentional pulse to the case of two attending
rhythms. Each of several attending rhythms has a potential for
coordinating with a single distinct periodicity in the external
rhythm. In this more general model, attending rhythms not only
respond to the exigencies of external thythms; they are also con-
strained by relationships with one another. Specifically, internal
oscillations are coupled to one another so as to preserve certain
phase and period relationships. These interrelationships offer the
potential for expressing relational information about the rhythm’s
underlying temporal form.

Coordination between two self-sustaining oscillations. Inter-
nal coupling gives rise to phase and period relationships among
attending rhythms that can express certain psychologically persist-
ing or compelling rhythmic relationships (see also Jones, 1976).
However, coupling among internal oscillations differs from the
coupling between a single attentional rhythm and an external
rhythm in two important ways. First, external-internal coupling is
unidirectional; the external rhythm affects the internal rhythm, but
not vice versa. Internal-internal coupling, however, can be bidi-
rectional, so that internal oscillations affect each other. Second,
with external-internal coupling, we are interested mainly in 1:1
coupling (i.e., one attentional pulse corresponding to each onset).
With internal coupling, we are interested in more complex ratios.
For example, a 2:1 phase relationship means that one attending
rhythm completes two cycles in the same time required for the
other to complete one cycle. This implies a 1:2 period relationship,
the former having one half the period of the latter. The existence
of long-term internal relationships such as these enables dynamic
representation of the structure of more complex rhythms.

We describe phase and period coupling of internal oscillations
using the simplest possible linear model. We also assume a simple
long-term relationship between O, and O,, one in which the
average period ratio, p,/p,, is 0.5. First we consider phase cou-
pling for two oscillations, O, and O, (see Appendix C). We
assume that both respond to the same external rhythm, which
comprises at least two distinct periodicities. For instance, Figure
3D shows a rhythm comprising two periodicities, P; and P, (P,
is strictly isochronous; P, is variable). The idea is that O, should
synchronize with P, and O, should synchronize with P,; how-
ever, both oscillators respond to all onsets. Figure 11 (Panels A
and B) shows the phase of onsets for the sequence of Figure 3D
relative to O, and O,, respectively, as each oscillation adapts to
this sequence.

To express such behavior, two phase equations are necessary,
one for each oscillation. The subscript i is used to denote the
phase, ¢,, and period, p,, of O, (i = 1, 2). As before, the index
n counts onsets in the external rhythm, but now it is a superscript.
The two phases are coupled internally:

tn+l - tn
P+ = ¢V +- PO nsF (")

- anl(d’(n), K(")) (mod_g5051)

and

Ly — tn
R D AT
2

- aGlz((b("), K(")) (mod_pso51). (8)

The first three terms on the right-hand side of each equation
correspond to the three terms on the right-hand side of Equation 3.
The final term is a second, internal coupling term that describes the
force exerted by internal oscillations on one another. This force
continually pulls the two oscillations toward a 2:1 phase-locked
relationship. Here ¢ = [¢,, ¢,] represents the phase of both
oscillators, and & = [k, k,] represents focus (see Appendix C).
The new parameter, «, represents the strength of internal phase
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Figure 11.  Response of two self-sustaining oscillations (O,, O,) to the external rhythm of Figure 3D, a rhythm

with two periodicities (P,, P,), one of which fluctuates randomly. Predicted changes in phase, period, and focus
over time are shown for each oscillator in the top (A and B) middle (C and D), and bottom (E and F) panels,
respectively (cf. Equations 8, 9, and 11). In A, mean vector length, r;, reflects the relative phase of onsets from
periodicity £,; in B, r, reflects the relative phase of onsets from periodicity P, (shown as open circles; P, onsets

are shown as xs). IOl = interonset interval.

coupling, 0 =< a < 2. If a is 0, the model implements two
independent oscillations; if « is 1, any phase difference is cor-
rected in one iteration.

Adaptation in this two-oscillation system involves both external
and internal relative phase. Figure 11A shows that large deviations
from isochrony in P, cause O, to experience relatively large
expectancy violations. Accordingly, large adjustments to ¢, resuit
via external phase coupling. By contrast, external phase relative to
O,, shown in Figure 11B, clusters near 0 and 0.5. The latter causes
negligible adjustments to ¢,. This is because the shape of the
coupling function (Figure 7) implies that onsets near ¢ = 0.5 are
effectively ignored. The phases clustering near zero, however,
reflect occurrences of regularly spaced onsets corresponding to the
isochronous periodicity P,, but note that sometimes these relative
phase values are significantly different from zero. This discrep-
ancy is caused mainly by internal phase coupling: O, adapts its
phase in response to O,, which is responding to a highly variable
onset sequence. In this case, internal coupling has a slight desyn-
chronizing effect, distracting O, from its target periodicity P,.
Conversely, the presence of O, cushions the blows of large ex-
pectancy violations to O,, and so adjustments are smaller than
they would otherwise be.

Attending rhythms also respond to systematic rate changes in
external rhythms by adapting their intrinsic periods (Figure 11,
Panels C and D). This, in turn, can affect their internal relationship.
Thus, we also consider period coupling between two attending
rhythms. Through internal period coupling, two oscillations can
maintain an appropriate relative period as they simultaneously
respond to rate modulations in an external rhythm. Our expression

of period adaptation for two oscillations parallels that of the
one-oscillation model (Equation 4):

pi Y = pl” + piim, F($1") — aPyy (™, p, k™)

and

PEY = b + pPn,F(8Y) = aPi(®, B, k7). (9)

For simplicity, we assume that the strength of internal period
coupling is identical to that for phase coupling. This system
estimates periods of two different external periodicities within a
sequence while maintaining an invariant 1:2 ratio between the
periods of O, and O,. Panels C and D of Figure 11 illustrate
period adaptation in response to both external and internal forces.
External forces cause large period changes in O, which are passed
along to 0, via internal coupling. Thus, in Figure 11D, p, changes
even though external forces acting on it are negligible. Conversely,
deviations of p, are smaller than they would otherwise be as a
result of a steadying influence of O,.

Two trains of attentional pulses: Two time scales. We have
assumed that there are two periodicities, P, and P,, present in the
external rhythm (e.g., Figure 3D) and two oscillations, O, and O,, that
synchronize to them. Each oscillation targets attentional energy to
expected times consistent with its intrinsic period. These pulses occur
at two different time scales given by periods conforming to a 1:2 ratio.
Furthermore, two focus variables (k,, i = 1, 2) adapt to the external
rhythm, one for each attentional pulse. We wish to measure synchro-
nization to P; and P,, respectively, as suggested in Figure 12. How-
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Figure 12. A: O, pulses adapting over time to the randomly perturbed
periodicity, P,, nested within the rhythm of Figure 3D. Beneath is a
relative phase histogram for P, and summary density for O; note that
incrementally estimated synchronization strength (s, = 0.720) matches the
mean vector length for P, (Figure 11A; r; = 0.720) well. B: Pulses for
0, to the fixed periodicity, P,, in the same rhythm. Summary density for
O, captures the relative phase histogram for P,; again, incrementally
estimated synchronization strength (s, = 0.923) matches the mean vector
length for P, (Figure 11B; r, = 0.931).

ever, we assume that information about which onset marks which
periodicity is not available to the estimation process. Such problems
can be dealt with via the expectation-maxirmization algorithm (Demp-
ster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1997), which we
adapt to incremental estimation:

st = s — n.a®r(d™; k) (s ~ cos 2mP{), i =1, 2

and

K™D = g '[H(b, s V)] (10)

Equation 10 is similar to Equation 7 with the addition of an
expectation-maximization coefficient, 'rj(d); k), to the adaptation
term; this coefficient is the essential contribution of the expectation-

maximization estimation (see Appendix C). It scales the contribution
of the nth onset to the next estimate of k; according to the conditional
probability that this onset marks P;. The factor a® is the amplitude of
the nth onset, scaled to the range [0 1], reflecting the fact that onset
amplitudes differ within a sequence.

To illustrate, consider the two-periodicity stimulus of Figure
3D. Figure 11 (Panels E and F) shows changes in attentional focus
as it adapts according to Equation 10. In both cases, k increases
over time, implying narrowing widths of both attentional pulses.
The two trains of attentional pulses are illustrated in Figure 12
(Panels A and B, respectively) as the densities evolve over time.
Also, the relative phase histograms for stimulus onsets correspond-
ing to P, and P,, respectively, are compared with summary
densities for O, and O,. Without any information about which
onsets mark which periodicities, each focus variable, k;, comes to
summarize the synchronization of O; with P;.

Summary

This section has described three aspects of attending rhythms.
First, temporal targeting of attentional energy to external rhythms
was shown to arise from a self-sustaining oscillation that entrains
to external rhythms. Second, an attender’s response to unexpected
as well as expected event timings was explained via the construct
of an attentional energy pulse modeled as a periodic probability
density. Finally, these notions were generalized to multiple inter-
acting attending rhythms. This enables description of a pair of
oscillations that jointly track a complex time pattern while dynam-
ically representing its underlying rhythmic form.

Responses to Event Time Structure:
Experiments and Models

This section describes three listening experiments along with sim-
ulations of listeners’ performance based on the dynamic attending
model described earlier. The experiments focused on the three main
aspects of our theory: attentional coordination (Experiment 1), atten-
tional focus (Experiment 2), and the two-oscillation model (Experi-
ment 3). Two experiments involved time discrimination (Experi-
ments 1 and 3), and the other involved a time interval classification
task (Experiment 2). Experiment 1 addressed hypotheses about at-
tending to the rate-modulated sequences. Experiment 2 addressed
hypotheses about attentional pulse and the role of attentional focus.
Experiment 3 addressed the coordination of two internal oscillations
and the dynamic representation of more complex rhythmic forms.

Experiment 1: Attentional Coordination and
Time Discrimination

Experiment 1 examined the way in which event time structure
regulates attending through the coordination of attending and
external thythms. We used a time discrimination task because it is
well suited to evaluation of predictions derived from the atten-
tional model. It permitted assessment of attentional coordination
with rate-modulated sequences because it can gauge an attender’s
sensitivity to fine time changes. This task requires listeners to
detect small time changes embedded within isochronous, higher
pitched test regions of rate-modulated sequences, such as in Fig-



DYNAMICS OF ATTENDING

ure 13. Contextual rate modulations of various degrees mimic
tempo fluctuations of natural events in that they might slow
(decelerate) or speed (accelerate) pattern rate locally.

We tested the hypothesis that time discrimination in isochronous
test regions within rate-modulated patterns is best in sequences
that allow good attentional coordination. According to the attend-
ing rhythm model, both isochronous sequences and sequences with
small rate modulations should provide for good attentional coor-
dination. In addition, for any model to be a serious contender for
explaining people’s sensitivity to time interval information, it must
pass two benchmark tests. First, it must adequately describe effects
of temporal context (rate modulations). Second, it must predict
differences in the noticeability of time changes. Accordingly, we
manipulated both degree of rate modulation and magnitude of
to-be-detected time changes.

Method

Participants. Ninety-six undergraduate Ohio State University students
participated in this experiment in return for course credit in introductory
psychology. None had more than 2 years of musical training.

Apparatus. Al stimuli were programmed via version 5.0 of the MI-
DILAB software (R. Todd, Boltz, & Jones, 1989) on a 486 IBM PC
compatible computer interfaced by a Roland MPU-401 MIDI processing
unit controlling a Yamaha TX81Z FM tone generator set to a sine wave
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voice. Stimulus patterns were recorded and played on a cassette deck to
listeners equipped with AKG headphones (Model K240).

Stimuli and conditions. A basic 25-tone sequence comprising 24 IOIs
was used to create 177 experimental sequences. In all, IOIs were marked
by tones of equal amplitudes (ca. 76 dB SPL) following the format for
context and test regions shown in Figure 13. The context and test tone
frequencies were 261 Hz (C4) and 329 Hz (E4), respectively. All test
region I0Is were 600 ms (with the exception of changed IOIs).

Two variables, modulation and pattern type, determined the temporal
structure of context regions. The four levels of rate modulation, indexed by
the standard deviation of 15 context IOIs, were 21, 39, 57, and 76 ms.
These comprised (roughly) equal numbers of positive and negative devi-
ations from the mean IOI (600 ms). The same set of IOIs was arranged in
three different ways, determining three nonstationary (termed nonisochro-
nous) pattern types: rate-increasing sequence, rate decreasing, and alter-
nating IOl magnitudes within the 5 IOIs of a context region. Finally, a
fourth pattern type, an isochronous one, functioned as a control.

Two additional variables determined test region structure: magnitude of
the to-be-detected (target) time change and type of time change. On all
but 24 catch trials, a nonzero time change occurred with equal likelihood
in one test region: Ar = 21, 39, or 57 ms (Weber fractions, At/IOI,
of 0.035, 0.065, or 0.095, respectively, assuming that the referent IOI is
600 ms). The type of time change was determined by the direction
(advance vs. delay) of a shift in the onset time of the fourth tone within a
test region. This change affected two IOIs (the third and fourth; see Figure
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Figure 13. A: An auditory stimulus in Experiment 1 that interleaves test and context regions. B: Successive
interonset intervals (IOIs) as well as the locus of a to-be-detected time change. C: Nature of rate modulation in

context regions.
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13B), creating a short-long (advanced or early) or a long—short (delayed or
late) rhythmic deviation.

Design. The design was a 4 X 4 X 3 X 2 mixed factorial. The single
between-subjects variable was modulation, with four levels (SD = 21,
39, 57, or 76 ms). The three within-subject variables were pattern type
(isochronous, increasing, decreasing, or alternating rate), time-change
magnitude, (21, 39, or 57 ms), and type of time change (advanced or
delayed). Twenty-four participants were randomly assigned to each of the
four different levels of the rate modulation variable.

Procedure. On each of a series of prerecorded trials (sequences), a
2-alternative forced choice (AFC) procedure required listeners to indicate
(in writing) whether a sequence contained a time change in its first or
second test region. Each trial began with a 500-ms warning tone that
preceded the initial tone in a pattern by 2 s. The interval between the onset
of a pattern tone and that of the next warning tone was 3.6 s. Listeners
received 8 training trials with 100% feedback, followed by session trials
with 10% sporadic feedback. Each modulation condition comprised 168
trials (with two brief rests). Each of the three time changes occurred within

each of the four patterns, equally often as advanced (—At) and delayed
(Ar) targets, thereby creating 24 experimental conditions. These 24 pat-
terns, along with 4 catch patterns (0 ms), were randomized within six
blocks of 28 trials each; thus, each condition occurred six times within an
80-min session.

Results and Discussion

Generally, listeners found it more difficult to detect a time
change in nonisochronous (nonstationary) than in isochronous
(stationary) patterns. Accuracy increased as rate modulations de-
creased and as the magnitude of the time change increased. Mean
proportions of correct responses, as a function of modulation
condition and time-change magnitude, appear in Figure 14 (aver-
aged over the three nonisochronous pattern types).

An analysis of variance (ANOVA) performed on PC scores
indicated that the main effect of modulation was significant, F(3,
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Figure 14, Mean proportion correct (PC) for isochronous and nonisochronous sequences in Experiment 1.
Mean PC is given as a function of the magnitude of the to-be-detected time change (abscissa) and, respectively,
magnitude of rate modulation (top) and type of time change (bottom).
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92) = 6.96, MSE = 0.5364, p < .0003, as was that of
time-change magnitude, F(2, 184) = 117.24, MSE = 0.0612,
p < .001. The interaction of these two variables was not
significant.

Although pattern type influenced performance, this effect was
entirely due to the fact that listeners were better with isochronous
patterns (mean PC = 0.78) than with nonisochronous patterns
(mean PC = 0.74), F(3, 276) = 5.89, MSE = 0.03012, p <
.001. Follow-up analyses confirmed that there were no reliable
differences within the nonisochronous patterns.

Time-change type (early vs. late) produced both main effects
and several interactions. Although statistically reliable, these
effects were small relative to others observed. Late targets
were more noticeable than early ones, F(1, 92) = 9.85,
MSE = 0.0227, p < .005. The long-short rhythmic deviation
was especially noticeable in small rate modulation conditions,
leading to an interaction of these two variables, F(3, 92) = 2.72,
MSE = 0.227, p < .0S. Time-change type also interacted with
pattern type (isochronous vs. nonisochronous) and time-change
magnitude, F(6, 552) = 2.36, MSE = 0.0239, p < .05 (see
Figure 14, Panels C and D). This three-way interaction indicates
that listeners were more sensitive to late targets (the long—short
rhythmic perturbation) in isochronous sequences than in noniso-
chronous ones, especially with small time changes (e.g., 21 ms).
With nonisochronous sequences, a larger time change (e.g., 39 ms)
was required to make the early targets more noticeable. Follow-up
analyses indicated that the focus of this interaction was between
isochronous and nonisochronous sequences; pattern type did not
play a role.

Finally, a curious finding is revealed by listeners’ responses to
the isochronous patterns. The data of Figure 14 indicate the pres-
ence of substantial trial-to-trial carryover effects within a session.
Isochronous pattern performance gauges this because these pat-
terns appear in all four modulation conditions. Mean PC scores for
these sequences, within each modulation condition, are shown in
Figure 14. Performance on isochronous and nonisochronous se-
quences across rate modulation conditions was quite similar. This
is remarkable because isochronous patterns contain no modula-
tion. Nevertheless, performance on isochronous patterns differed
significantly with modulation condition, F(3, 92) = 7.09,
MSE = 0.1368, p < .00025. This indicates that effects of rate
modulation not only carry over from context to test region within
a single nonisochronous pattern (i.e., pattern context effects) but
transport over trials from one pattern to another (i.e., session
context effects).

Temporal acuity thresholds were determined via a Probit pro-
cedure (Finney, 1971) applied to group data within each modula-
tion condition. This procedure used a modified Newton-Rahpson
algorithm to fit the cumulative form of the normal density function
over the three absolute magnitudes of time change (21, 39, or 57
ms) for all pattern types. The 24 listeners within each modulation
condition together contributed 1,728 and 576 observations for
nonisochronous and isochronous patterns, respectively. For a
2AFC, the Probit base response rate parameter, ¢, is fixed at 0.50,
and a threshold criterion is PC = 0.75. Resulting threshold values,
presented in Table 1, were based on interpolations for all but one
condition (isochronous in the 21-ms modulation condition) in
which a modest downward extrapolation was required. These

Table 1

Relative Difference Limens (Probit Analyses) for Isochronous
and Nonisochronous Sequences Averaged, Respectively, for
Each Group of Listeners Receiving One of the Four Different
Rate Modulation Conditions in Experiment 1

Difference limen (Probit)

Modulation
(SD) Isochronous Nonisochronous
21 ms 023 .037
39 ms .060 067
57 ms .067 .083
76 ms 083 105

values were consistent with accuracy scores in that temporal acuity
was best for isochronous pattern contexts presented in the lowest
modulation condition and worst for the nonisochronous patterns
with greatest modulations.

Overall, the data are consistent with the dynamic attending
hypothesis that regular sequences that create few violations of
temporal expectancies (e.g., isochronous and small rate modula-
tions) should yield good performance, with listeners displaying
acute sensitivity to deviations from an underlying rhythm. In these
conditions, performance is well above chance, and Weber fractions
(0.03 to 0.07) correspond to those reported elsewhere when rate
modulations were absent (e.g., Drake & Botte, 1993; Getty, 1975,
1976; Halpern & Darwin, 1982; Monahan & Hirsh, 1990).

The data are also consistent with statistical models of temporal
event structure. It is not clear how conventional psychophysical
models address this task (e.g., Allan, 1979; Creelman, 1962; Getty,
1975, 1976; Killeen & Weiss, 1987; M. Treisman, 1963), but the
multiple look model correctly predicts observed decreases in acu-
ity with increases in rate modulation. In contrast to the dynamic
attending approach, this is due to sequence variability, which
yields fuzzy rate encoding. Statistical models have more difficulty
with findings related to type of time change, however. This is
because 10l mean and variance are identical for sequences con-
taining early and late time changes. Others, using different tasks,
have reported similar acuity differences as a function of type of
time change (McAuley, 1995; McAuley & Kidd, 1998). Finally,
the session context effect, wherein performance with isochronous
sequences changes as a function of neighboring patterns, remains
challenging for all perspectives.

Modeling Time Discrimination Performance

The dynamic attending model addressed, via two simulations,
the main features of Experiment 1 results. We fit PC predictions
about the effects of rate modulation, time-change magnitude, and
other variables. These predictions rest on attentional focus (the
width of the attentional pulse) relative to the magnitude of a time
change. A given time change is more noticeable when focus is
strong (narrow pulse) than when it is weak (wide pulse), because
the former represents violation of a more focused expectation.
Finally, focus is pegged to the phase and period of an adapting
temporal referent.
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The complete model comprises three main parameters: phase
coupling strength, 7,; period adaptation rate, n,,; and focus adap-
tation rate, 1,. No additional parameters are involved in mapping
state variables onto predicted PC values for this 2AFC task. Details
of the task-specific PC calculations are found in Appendix B.
Values of parameters used in all simulations are summarized in
Table 2.

In both simulations, the model predicted mean PC for each
condition (individual differences were not considered). It was
exposed to four complete experimental sessions, one session per
modulation condition. This allowed us to factor in effects of
session context. On each trial, the PC calculation yielded a pre-
dicted PC value for a given pattern; these values were averaged
over all repetitions of that pattern in a session.

Simulation 1A: No Attentional Coordination

This simulation generated PC predictions for an attentional
rhythm that is not coupled to an external thythm.

Parameters. We turned off phase and period coupling by
setting 1), (phase coupling strength) and 7, (period adaptation
rate) both to zero. The resulting model was similar to that of
Equation 2, in that it approximated a clock that is not coupled
to—and therefore cannot entrain to—the external rhythm. In ad-
dition, adaptation rate for attentional focus was set to i, = 0.0035,
modeling very slow adaptation to relative phase variability.

Initial conditions. On each trial, initial phase, ¢,, was set to a
small random value (M = 0.00, SD = 0.01); initial period, p,,
was set to a random value near 600 ms (M = 600 ms, coefficient
of variation [cv] = 0.01). Attentional focus, k, was set to zero on
the first trial of each session, but its final value for a pattern was
allowed to carry over from trial to trial within a session. We
reasoned that this simple form of memory, in addition to the slow
adaptation of attentional focus, might accommodate session con-
text effects.

Results. Figure 15A displays mean PC predictions. Clearly,
this simulation failed to predict any aspects of these data; in fact,
chance performance was predicted in all conditions. Correspond-
ingly, root-mean-square deviation (RMSD) with these data was
large (0.289), indicating that the absence of coupling hurts perfor-
mance. Thus, we move to Simulation 1B.

Simulation 1B: Good Attentional Coordination
The second simulation generated PC predictions for an atten-

tional rhythm coupled to an external rhythm.

Table 2
Parameter Values and Root-Mean-Square Deviation (RMSD)
Fits for All Simulations

Period Focus
Phase coupling adaptation adaptation
Simulation strength (n,) rate (71,) rate (7,) RMSD
1A 0.0 0.0 0.005 0.289
1B 0.6 0.1 0.005 0.055
2A 0.6 0.1 0.000 0.213
2B 0.6 0.1 0.005 0.063
3A 1.0 0.3 0.005 0.104
3B 1.0 0.3 0.005 0.064

Parameters. For the second simulation, we enabled phase and
period coupling, setting 1, = 0.6 and n, = 0.1. The adaptation
rate for attentional focus was again set to n, = 0.005.

Initial conditions. As in Simulation 1A, initial phase, ¢;, was
set to a small random value (M = 0.00, SD = 0.01) at the
beginning of each trial, and attentional focus, k, was allowed to
carry over from trial to trial within a session. Because period
adaptation was enabled for this simulation, final period was carried
over from the previous trial. Thus, as in the previous simulation, p,
usually differed slightly from 600 ms. No additional noise was
added to this initial estimate.

Results. Figure 15B displays mean PC predictions. It is evi-
dent that this simulation was far superior to the first in predicting
the performance of our listeners. This was confirmed by the much
smaller RMSD (0.055). The model correctly predicted that large
time changes are easier to detect than small time changes. It also
predicted a large effect of contextual modulation: Discriminability
gradually falls off with increasing contextual modulation. A small
effect of time change (i.e., early-late) was also predicted by this
simulation. Interestingly, it was very nearly opposite to the small
effect observed in our experiment; the model found early time
changes easier to notice than late time changes (we return to this
point shortly). Finally, a large session context effect was predicted.
The model’s performance on isochronous sequences was greatly
influenced by the modulation session in which they occurred, just
as it was for listeners.

Discussion

The preceding simulations indicate that coordination of atten-
tion with external events is crucial. The first simulation, in which
the attentional rhythm was not coordinated with the attentional
oscillation, predicted chance performance in this task. The reason
is evident in Figure 16 (Panels A-C), which displays the time
course of the state variables in an actual trial from a high rate
modulation session (SD = 57 ms) of Simulation 1A. When a
slightly mistuned initial period is combined with a rate-modulated
sequence, phase drifts and finally wraps around (much as predicted
by a simple clock model; see Figure 6, Panels B and C). And
because this general state of affairs obtains throughout the session,
focus remains correspondingly low (Panel D). By contrast, when
phase and period coupling enter the picture, model fits improve
dramatically. Figure 16 (Panels E-H) displays the state variables
for the corresponding trial from the same session of Simulation 1B.
The initially mistuned period (Panel F) now adapts to the period of
the sequence. In addition, phase (Panel E) is well coordinated with
the event onsets, and accordingly attentional focus (Panels G and
H) is high. Focus is estimated over several trials, accounting for
the session carryover effect.

The entrainment of an internal oscillation to an external
thythm (Equations 3 and 4) is important in explaining its
superiority over an uncoupled (i.e., fixed clock) model (Equa-
tion 2). In the latter, lack of coupling precludes its responding
adaptively to various rate perturbations in the different se-
quences of this experiment. These perturbations continue to
produce large deviations from the expectations generated by the
attending rhythm, and large expectancy violations keep atten-
tional focus low as a result of a lack of synchronization. Thus,
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Figure 15. A: Predicted proportion correct (PC) from Simulation 1A (no attentional coordination), which
involved no coupling, n, = 7, = 0. B: Corresponding predictions from Simulation 1B (good attentional
coordination), which incorporated coupling, n, = 0.6, , = 0.1. Compare predicted PCs for these conditions

with observed PCs in Experiment 1, shown in Figure 14.
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Simulation 1B — Good Attentional Coordination
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Figure 16. Characteristic model predictions for an actual trial in a high rate modulation condition of
Experiment 1. Predictions are shown as time series for the three state variables of the model, phase, period, and
focus. A relative phase histogram and summary density are also shown. The histogram shows the observed
distribution of relative phase on the current trial, whereas the summary density (solid line) shows predicted pulse
width based on previous trials, A-D: Predictions from Simulation 1A (no attentional coordination). E-H:
Corresponding predictions from Simulation 2A (good attentional coordination). ’

for rate-modulated patterns, fixed clock models do not suffice.
Statistical models, on the other hand, do generate the correct
rank order of predicted PC scores for nonisochronous patterns.
Their success derives from a dependence on a sequence’s 101
variability; in the patterns of this experiment, IOI variability
was strongly correlated with quality of synchronization. How-
ever, statistical models do not adequately predict session con-
text effects with isochronous patterns.

One outcome none of the models predicts is the difference
between early and late time changes (and the resulting interac-
tions). Overall, late onsets were slightly easier to detect than
early ones, with this more evident for small time changes in
isochronous sequences and for larger ones in nonisochronous
patterns. Currently, our model weighs late and early onsets
equally in an isochronous context. There is reason to question
this assumption, however. McAuley (1995) found that, with
isochronous sequences, late onsets are more noticeable at slow
rates and early ones are more noticeable at fast rates; his model
handles these findings. Similar assumptions could be incorpo-
rated in our model. Because the bulk of evidence on this
remains inconclusive, however, we refrain from a theoretical
commitment.

Experiment 2: Duration Judgments and the
Attentional Pulse

The single-oscillation model rests on two major assumptions,
only one of which, attentional coordination, was addressed in
Experiment 1. The other concerns the attentional pulse: Atten-
tional focus is assumed to reflect a concentration of energy at
particular points in time. Experiment 2 addressed the second
assumption. The incorporation of pulsed energy implies that
performance should be better when a time interval begins and
ends at expected rather than unexpected times, because the
former represent points of maximum attentional energy. In light
of this, the outcome of Experiment 1 may seem surprising:
Time discrimination performance was best with large time
changes, meaning that performance improved as a to-be-
detected time interval (or tone onset) departed from an expected
point in time. Although the model neatly describes time dis-
crimination data, how does its success in this case square with
the idea that pulses of attentional energy center about expected
locations? Should not discrimination performance be best when
the markers of time intervals fall within the region of maximum
attentional energy concentration?
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The answer is found in the way model predictions accommodate
different tasks. In a 2AFC time discrimination task, best perfor-
mance is associated with correct responses to novelty (i.e., to
expectancy violations) because listeners have only two choices,
both differences. The versatility of our approach is its quantifica-
tion of responses to unexpected as well as expected time intervals.
The model implies that “different” responses are more likely to be
correct when sequences are highly regular and attention is highly
focused so that a time change “pops” out. This is precisely what
happened with isochronous sequences in Experiment 1, in which
listeners indeed performed best. In short, people should most
reliably notice a changed tone onset when it has violated a strong
expectancy about “when” the tone should occur.

The flip side of this coin is relevant to the present question.
Specifically, should not time judgments be better when they in-
volve expected rather than unexpected onset times? The answer is
yes, but a different task is required to test this. With the invaluable
assistance of Ralph Barnes, we devised a categorization task
similar to one used by McAuley and Kidd (1998): Listeners judged
target time intervals as the same as, longer than, or shorter than a
preceding standard interval. In fact, the target was equally often
the same as, longer than, or shorter than the standard. A highly
focused expectancy for the standard was created by preceding it
with a sequence of isochronous IOIs. Sometimes the standard
interval confirms this expectancy, but more often it does not.
Figure 17 depicts the latter, where the standard IOl is unexpected.
We anticipate that people will be better at judging these two

intervals when the standard is expected rather than unexpected. In
this experiment, we used three expectancy conditions: expected,
where the standard duration, T, equals the 101 of preceding dura-
tions (600 ms); unexpected, where T ends either early or late by 21
ms; and very unexpected, where T ends either 76 ms early or late.
The model predicts that categorization performance will be best
when the standard is expected and worst when it deviates markedly
from expectation.

Method

Participants. Of the 48 original participants, the data from 10 were
eliminated for reasons described shortly. Analyses were based on 38
listeners, all of whom met the same criteria as in Experiment 1.

Apparatus. The apparatus was identical to that of Experiment 1.

Stimuli and conditions.  All auditory sequences comprised a series of
context IOIs followed by one standard and one target IOI arranged as in
Figure 17. The context sequence was always isochronous, composed of
five 600-ms IOIs marked by onsets of 60-ms tones (264 Hz). The I0Is
of standard, 7, and target, T + Az, intervals varied according to
expectancy conditions (described later). The time between onset of the
final standard tone and the first target tone was 3 s, 600 ms of which
was filled with a soft chord (component frequencies: 262, 294, and 392
Hz) designed to signal the forthcoming target interval; the onset of this
tone occurred 1,800 ms after the onset of the second tone of the standard
interval. The target interval followed the chord (see Figure 17). Equally
often, the standard IOI assumed one of the following values: 7 = 600
ms (expected), T = 600 ms * 21 ms (unexpected), or T = 600
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Figure 17. A and B: Stimulus sequence from the unexpected condition of Experiment 2; the standard interonset
interval (IOI), 7, follows an isochronous sequence and is followed by the target IOI, T + Ar. C: Rate curve for

this stimulus pattern.
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Table 3
Results of Experiment 2

Expected Unexpected Very unexpected
Measure M SD M SD M SD
Percentage correct 0.625, 0.122 0.588, 0.084 0.490, 0.078
d' 1.443, 1.274 1.168, 1.054 0.508,, 0.572
False alarm rate 0.320 0.183 0.361 0.175 0.380 0.125

Note. Means with different subscripts differ (honestly significant difference) at p < .01.

ms * 76 ms (very unexpected), resulting in a range of T values (in
ascending order) of 524 ms, 579 ms, 600 ms, 621 ms, and 676 ms. For
any standard 7, the target interval was T + Af; equally often, it was
shorter than (At = —40 ms), equal to (At = 0), and longer than
(At = 40 ms) the standard. These three categories occurred an equal
number of times with each type of target. They were combined to form
three expectancy conditions in which the standard interval ended on
time or was deviant by either 21 ms or 76 ms; over the three expectancy
conditions, the Weber fraction was identical: At/T = 0.067, which
substantially exceeded the relative time discrimination threshold for
an isochronous context of this length (between 0.02 and 0.04;
Drake & Botte, 1993; Jones & Yee, 1997; Schulze, 1989; see also
Table 1).

Procedure. Listeners heard recorded instructions and demonstration
patterns and studied a diagram of the task (similar to Figure 17, without
times indicated). They were told to listen only for the standard and
target intervals and that the onset of the latter was signaled by a very
soft chord. Initially, they completed 20 practice trials with corrective
feedback regarding short, same, and long targets on each trial; these
trials contained roughly equal numbers of the three expectancy condi-
tions (expected, unexpected, and very unexpected). To ensure that only
listeners who clearly understood the task were included in the data
analysis, we included only experimental session data from listeners who
scored 60% correct or better on the last 10 practice trials (chance was
33%); in addition, all of the data of any listener who pressed a response
button before the onset of the target interval on more than 5% of the
trials were eliminated. A posttest questionnaire verified that listeners
followed instructions.

An experimental session comprised 180 trials, on each of which
listeners judged the final IOI (target) relative to the standard by pressing
one of three buttons labeled shorter, same, or longer. They received
noncorrective feedback (i.e., correct vs. incorrect) on each trial. Stimuli
were presented over trials in 10 trial blocks; within each block, two of
each of the five expectancy conditions appeared in succession. The
order in which the five different pairs were presented was randomly
determined over the 18 blocks of trials, such that none of the three
response categories (shorter, same, and longer) were correct for more
than four successive trials. Equal numbers of the three categories
occurred over 60 trials. Each of the five expectancy conditions (i.e.,
different T values) occurred 36 times; thus, the relative frequency of
each T was 0.20, and the relative frequency of any unexpected T value
was 0.80.

Results and Discussion

Results indicate that expectancy systematically affects time
judgments. Table 3 presents means and standard deviations of PC,

d', and false alarm rates for the expected, unexpected, and very
unexpected conditions. As predicted, listeners were most accurate
(as indexed by PC) when the standard interval could be anticipated
on the basis of preceding context (the expected condition) and least
accurate when this interval was very unexpected, F(2, 74)
= 20.96, MSE = 0.006, p < .00001. A Tukey honestly
significant difference value of 0.059 (a = .01) indicates that
expected and unexpected conditions did not significantly differ,
but both differed from the very unexpected conditions. Similarly,
discriminability (d') decreased as the standard became less ex-
pected, F(2, 74) = 29.18, MSE = 0.124, p < .00001, and the
false alarm rate® increased, F(2, 74) = 29.99, MSE = 0.047,
p < .00001. Mean PC values exceeded chance (.33) in all
conditions (p < .01).

Figure 18 presents mean PC levels for the three expectancy
conditions with respect to the three time categories. Two features
of these data are evident. First, in the expected condition, listeners
were accurate, with roughly equal likelihood, in categorizing short,
same, and long target intervals (although best with the same
intervals). Second, in other conditions, there was a tendency to
judge targets based on early standards as shorter than their stan-
dards and those with late standards as longer. This tendency was
more marked in the very unexpected conditions. These findings
agree with those of McAuley and Kidd (1998).

Modeling Categorization Judgments

The sequences of Experiment 2 were shorter and simpler than
those used in Experiment 1; at most, they contained one perturba-
tion of an IOI before the target IOL. Accordingly, the single-
oscillation model predicts a narrow attentional focus as a listener
approaches the standard interval. With this model, we simulated
mean PC performance for the three response categories of this
task; details of PC derivations from the von Mises distribution are
provided in Appendix B. Our strategy was to model attending by
requiring the model to respond to all Experiment 2 stimulus

S In this context, false alarm rate for a particular type of time change of
the comparison IOI was determined separately for each of the three types
of changes (longer, same, or shorter). It was the rate at which a listener
used the response term for that time change (e.g., same) inappropriately
when the comparison manifested a different change (i.e., as in responding
“same” to a longer comparison).
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Figure 18. A: Mean proportion correct (PC) values over the three categories in each of the five expectancy
conditions of Experiment 2. B and C, respectively, show predictions of Simulation 2A (no attentional pulse; 7,
= 0) with widely distributed attending energy and Simulation 2B (adaptive attentional pulse; n, = 0.005)
with focused energy.

sequences. We aimed to explain both observed expectancy effects Simulation 2A: No Attentional Pulse
and the role of attentional focus. To accomplish this, we predicted
performance using two simulations, one with a fixed-width atten-
tional focus (Simulation 2A) and one with an adaptive focus
(Simulation 2B).
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If an attentional pulse is important in explaining attending, we
anticipate that PC predictions will not jibe with observed ones

when attentional energy is widely distributed over a cycle. To
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simulate diffuse attentional focus, we set k to zero, modeling a
uniform distribution of attentional energy over each cycle.

Pdarameters. We enabled both phase coupling and period ad-
aptation, setting v, = 0.6 and 1, = 0.1 Adaptation rate for
attentional focus was set to i, = 0, modeling fixed focus.

Initial conditions. On each trial, phase, ¢,, was set to a small
random value (M = 0, SD = 0.01), and period, p,, initially 600
ms, carried over from trial to trial. Attentional focus, k, was set to
zero. Because adaptation of focus was disabled, the pulse was
effectively disabled, modeling a uniform distribution of energy
throughout each cycle of the attentional rhythm.

Results. Figure 18B displays mean PC predictions for all nine
conditions of Experiment 2 (RMSD = 0.213). The strongest pre-
diction was that performance is best when judging two identical
intervals, regardless of condition. Although this prediction was not
completely at odds with the experimental findings, the PC scores
generated for the same category were disproportionately high
relative to others. This simulation also predicted that, in the early
conditions, judgment accuracy should be greater for a shortened
than a lengthened interval. Conversely, in the late conditions, it
should be easier to classify a lengthened than a shortened interval,
but with lower accuracy scores than observed. None of these
predictions quite fit the data, so we turn to Simulation 2B.

Simulation 2B: Adaptive Attentional Pulse

The full model unleashes attentional focus; it is free to adapt to
sequence and standard IOIs. With Experiment 2 sequences, we
expected focus to increase, provided that a high concentration of
attentional energy is targeted to an expected ending time of the
standard IOI. This also means that the ending time of a very
unexpected standard will fall outside the pulse and receive little
energy.

Parameters. For the second simulation, we enabled phase and
period coupling as in Simulation 2A, setting B, = 0.6 and 7,
= (.1. Focus adaptation was enabled, setting 0, = 0.005.

Initial conditions. In a manner similar to that of the previous
simulation, phase, ¢,, was set to a small random value (M = 0,
SD = 0.01), and period carried over from trial to trial. Attentional
focus, k, was set to zero at the outset of the session and carried
over from trial to trial, allowing an adaptation of attentional focus
within a sequence and over several trials.

Results. Figure 18C displays mean PC predictions (RMSD =
0.063). In contrast to the simulation with no attentional pulse, the
adaptive pulse simulation nicely described observed outcomes. As
evident from predictions regarding expected sequences, same inter-
vals were still easier to identify than long or short intervals, but by a
smaller margin than in the previous simulation, in agreement with the
data. Furthermore, the tendency of listeners to classify an interval as
shortened (or lengthened), when it was in fact the standard that was
shortened (or lengthened), was predicted here.

Discussion

Two interesting outcomes are predicted by the adaptive pulse
model. The first concerns the effect of the expectancy condition on
categorization accuracy and the role of the attentional pulse. In
Simulation 2A, attentional energy was unfocused; energy was so

widely distributed that even suprathreshold differences were not
responded to. This led to the incorrect prediction that even very
large expectancy violations are the same as synchronous onsets.
Neither differences between the standard and the preceding IOIs of
600 ms nor those between the standard and the target IOIs were
reliably noticed. Everything seems similar.

By contrast, a focused pulse, which was predicted by Simulation
2B, concentrates energy narrowly around ¢ = 0, given the iso-
chronous context preceding the standard. This correctly predicted
that judgments in the expected and unexpected conditions should
be relatively accurate. However, when the standard is very deviant
from a preceding context, it is difficult to accurately compare it
with a target interval. This is because the comparison ultimately
depends on the phase of the attentional rhythm. Small violations of
expectancy (e.g., unexpected) are tolerated, but large violations
(e.g., very unexpected) are not.

The second pattern of responding predicted by the adaptive
pulse model involved listeners’ tendency to judge a target long (or
short) when its standard ends late (or early). This is due to the fact
that the phase adjustment and period adjustment to the first devi-
ation (the standard interval) were only partial. Furthermore, al-
though the intervening chord and first onset of the comparison
interval reinforce the phase adjustment, they effectively eliminate
the period adjustment. This means that memory for the standard is
dominated by the context of surrounding IOIs (600 ms). The model
predicts that a standard functions like one of the context IOIs in
determining the locus of the pulse for judging a target. Thus, in a
very simple way, the model explains apparent biasing effects of a
standard on categorization judgments.

Experiment 3: Responding to Rhythmical Patterns

The final experiment returned to the issue of temporal event
structure. We relied on the more complex, rhythmical patterns
studied by Jones and Yee (1997; Experiment 3) to address this
question. In the introduction, we indicated that these data rule out
a purely statistical treatment of memory for rhythmical time inter-
vals (see Figure 2). Models that enlist an underlying referent
period, or beat, are more plausible. Povel and Essens (1985), for
instance, proposed that regular sequences induce a fixed beat
period that enables encoding of a series of patterned IOIs.

We aim to illustrate that responses to temporally patterned
sequences can be understood in terms of two attending rhythms.
The patterns involved differed from those of the first two experi-
ments in that both amplitude and IOIs were systematically varied
to create rhythmical sequences falling into two categories: regular
(RR and R) and irregular (I and IR), as shown in Figure 2. Within
such patterns are two identical test regions; listeners had to judge
which of the two regions contained a to-be-detected time change.

Method

Only the main features of the Jones and Yee experiment are presented;
a complete description appears in Jones and Yee (1997, Experiment 3). The
methodology was identical to that of earlier experiments with the following
exceptions.

Participants.
for course credit.

Stimuli and conditions.

Sixty-four undergraduate students participated in return

Figure 2 shows the four basic patterns (RR, IR,
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R, and I), all of equivalent duration (9,600 ms), that were used to create
pairs of standard and comparison monotone sequences (pitches of G4 and
D4, respectively). All patterns consisted of eight loud-soft (two beat)
cycles with an average cycle duration of 1,200 ms. In all patterns, when a
soft tone occurred within a cycle, it always subdivided that cycle into two
equal parts. The louder tone (80 dB SPL) in each cycle served as the initial
beat opening each cycle, and the softer tone (76 dB when present) supplied
the second beat. All tones lasted 60 ms.

Two pattern categories were regular (RR and R) and irregular (IR and I).
In each category, one pattern instance was more explicitly rhythmical (and
hence more variable, statistically) than the other; the more rhythmical
patterns were termed RR and IR. Less rhythmical sequences were R and 1.
The R sequence was isochronous except for a final lengthened IOI created
by omitting the soft tone in the last cycle. The I sequence was identical to
the R pattern with respect to four of its eight cycles; the remaining four
cycles had the same mean duration (1,200 ms), but their individual dura-
tions varied: 1,500 ms (Cycle 1), 1,400 ms (Cycle 4), 1,000 ms (Cycle 5),
and 900 ms (Cycle 8). These soft tones subdivided cycle durations-into two
equal IOIs (except for the final cycle). The RR and IR patterns were
developed, respectively, from the R and I sequences. Each contained four
lengthened 10Is created by omitting soft tones from the four cycles in R
and I sequences.

Apparatus and stimulus generation.
ments 1 and 2.

Procedure. After hearing a standard-comparison pair, listeners had to
localize (in writing) a small time change, Az, in one of two test regions of
the comparison sequence (2AFC). The time change always shifted the
onset of the soft tone within these (otherwise isochronous) test cycles
(Cycle 2 or 6). Assuming that the referent IOI is the average IOI (600 ms)
within a test region, A#/IOI = 0.075. Test regions were identical in all four
patterns. Thus, the four basic sequences differed only with respect to the
contextual time structure surrounding test regions.

Listeners completed 7 practice trials involving representative sequences
containing relatively large time changes; these were followed by 48 ex-
perimental trials. Feedback occurred only on practice trials.

Design. The design was a 4 X 2 mixed factorial. Four levels of session
context (a between-subjects variable) involved the following sets of pat-
terns: RR and R, RR and I, IR and R, and IR and I. Pattern instance,
referring to the two pattern levels (rhythmical vs. nonrhythmical) in each
of the four sets, was a within-subject variable. In any given session, half of
the trials involved standard comparisons based on either RR or IR; the
remaining trials involved pairs from R or I pattern types.

These were identical to Experi-

Results: An Overview

Two main findings in the ANOVA of PC scores are of interest.
First, the effect of session (RR-R, RR-I, IR-R, or IR-I) was
significant, F(1, 60) = 4.73, MSE = 0.040, p < .005. Second,
the session variable interacted with pattern type in a session, F(3,
60) = 5.27, MSE = 0.018, p < .005. Mean PC scores as a
function of pattern and session context are shown in Figure 19.
They indicate that, overall, regular patterns produced better per-
formance than irregular ones; performance was best in the RR-R
session and worst in the IR-I session.

More interesting is performance on individual patterns and the
way it changes as a function of session context, as reflected by the
preceding interaction. Figure 19 presents the performance of lis-
teners on the same sequence when it appeared with another pattern
in the two different session contexts (see abscissa). Note that
although both regular patterns produced good performance and
both irregular ones produced poor performance, there were intrigu-
ing carryover effects due to the accompanying session pattern.

Experiment 3 Results
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Figure 19. Results of Experiment 3 (from Jones & Yee, 1997; Experi-
ment 3 with nonmusicians). Mean proportion correct (PC) is shown for
each of the four patterns (regular [R], regular rhythm [RR], irregular [I],
and irregular rhythm [IR]) as a function of two alternate session partners.
Thus, for example, in Pattern R, mean PC = 0.79 when accompanied by
RR but only 0.65 with a different session partner, namely the IR pattern.

Two such effects are worth noting. First, statistically significant
improvement in performance on the R pattern occurred in the
session context of the RR pattern relative to that of the IR context.
Second, even the I pattern appeared to benefit from the RR context
relative to the IR (although this only approached significance).
Curiously, neither RR nor IR patterns seemed as vulnerable to
carryover effects as the R and I sequences.

Modeling Sensitivity to Rhythmic- Form

Although a single oscillation can respond to changing peri-
odicities within a pattern, it is less well equipped than two or more
oscillations to capture relational information about complex rhyth-
mic forms. Accordingly, we describe two simulations of the data
presented in Figure 19. They reflect performance of the model
based on a single oscillation (Simulation 3A) and two oscillations
(Simulation 3B). We continued to rely on time-change noticeabil-
ity as a gauge of a listener’s sensitivity to a pattern’s time structure.
To accomplish this, we assumed in both simulations, that the
oscillation whose period corresponds to the modal IOI, denoted by
0O,, supplies the referent for time-change detection. In effect, O,
supplies the underlying beat for detecting the time change. Unlike
fixed beat models, however, the oscillator adjusts phase and pe-
riod. Moreover, in the two-oscillation model, O; must respond not
only to exigencies of an external rhythm but also to the simulta-
neous pull of a second attentional rhythm, O,. In both simulations,
we presented the model with pairs of standard-comparison se-
quences. To address session context effects, we simulated each of
the four session conditions by exposing the given model to entire
sessions.
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Simulation 3A: The Single-Oscillation Model

A single-oscillation model predicts mean PC scores for the
present data by assuming that, in these rhythmical patterns, stron-
ger (louder) markers corresponded to higher amplitude markers
(a = 1.0 in simulation) and weaker (softer) markers corresponded
to markers of lower amplitude (¢ = 0.5 in simulation).

Parameters. We enabled both phase coupling and period ad-
aptation, setting 1, = 1.0 and 7, = 0.3. Adaptation rate for
attentional focus was set to m, = 0.005, again modeling slow
adaptation of attentional focus.

Initial conditions. On each trial, phase ¢V, was initialized to
a small random value (SD = 0.01) and period, p**’, was initial-
ized to 600 ms. Attentional focus, k", was initially set to zero. As
in Experiment 1, memory for focus carried over from trial to trial.

Results. Figure 20A displays mean PC predictions for each of
the four patterns in different session contexts (RMSD = 0.104).
The single-oscillation model correctly predicted the largest effect
in this experiment: that the regular patterns (R and RR) were much
more conducive to time-change detection than were the irregular
patterns (I and IR). In addition, the single-oscillation model cor-
rectly predicted significant negative carryover from the IR to the R
pattern. Unfortunately, the model also predicted considerable neg-
ative carryover from the I to the RR pattern, an effect not observed.
Furthermore, the marginally significant carryover effect of RR on
the I pattern was not captured, although a slight trend in this
direction was evident. Overall, the model predicted better perfor-
mance for the regular patterns and poorer performance for the
irregular patterns than observed. Thus, we turn to the predictions
of the two-oscillation model.

Simulation 3B: A Two-Oscillation Model

Our second simulation added a second oscillator to the system
of Simulation 3A. The oscillator of the previous simulation is
denoted here as O,, and the additional oscillator is denoted as O,,.
Following Equations 8 and 9, the two oscillations were phase
coupled with a 2:1 ratio and period coupled in a 1:2 ratio. O,
continued to serve as the referent oscillation; thus, p, supplied the
temporal referent for time discrimination. This enabled direct
comparison of performance in the two-oscillator simulation with
performance in the single-oscillator case.

Parameters. The parameters specifying the effect of the ex-
ternal signal, n,, m,, and 7, were identical to those of the
single-oscillator simulation and the same for both oscillators. The
parameter specifying internal phase and period coupling was set to
a = 0.5.

Initial conditions. On each trial, initial phases, ¢{" and ¢5",
were set to small random values (§D = 0.01), and initial periods,
piV and pSP, were set to 600 and 1,200 ms, respectively. At the
beginning of each new session, attentional focus for both oscilla-
tions, k(" and «{", was set to zero. As in previous simulations,
memory for focus carried over from trial to trial.

Results. Predicted PC values are shown in Figure 20B as a
function of pattern structure and session context condition
(RMSD = 0.064). The two-oscillator simulation did a better job of
predicting the main effect of pattern structure than did the single-
oscillator simulation. As with Simulation 3A, it correctly predicted

better performance with regular than irregular patterns, but it did
so with greater precision.

Simulation 3B also nicely captured observed session context
effects. The significant decrement in listeners’ performance ob-
served for the R sequence when accompanied by IR (vs. RR)
patterns was predicted by the two-oscillation model. In addition,
the model captured the slight advantage observed for the I se-
quence when accompanied by RR (vs. IR) patterns. The small,
nonsignificant advantage in listeners’ performance observed for
the RR sequence when accompanied by I (vs. R) patterns was not
captured by the model. However, the large effect in the opposite
direction (predicted by the single-oscillator simulation) disap-
peared: The two-oscillation model correctly predicted no carryover
effect for the RR sequence. Finally, this simulation also correctly
predicted no carryover effect for the IR patterns, although pre-
dicted performance on this pattern, overall, was somewhat lower
than observed.

Discussion

We make two observations about these fits to the Jones and Yee
data. First, the single-oscillation model (Simulation 3A) does a
remarkably good job of predicting the results of this experiment
involving rhythmic patterns. This is not too surprising, because the
experiment demonstrated that regular patterns, which afford
greater opportunity for entrainment, yield improved time discrim-
ination performance regardless of overall pattern variability. This
general prediction follows equally well from a single- or a
multiple-oscillation model. Second, it is also remarkable that a
two-oscillation model should predict these results better than the
single-oscillation model. Although rhythmic sequences were used,
there is no obvious reason for the two-oscillator simulation to fit
these data any better than a one-oscillator simulation, because
regular patterns should be trivially easy and irregular patterns
should be intractably difficult for both models. Thus, we direct our
attention to two questions: Why does the single oscillation cor-
rectly predict both the main effect and the most important car-
ryover effect in the Jones and Yee data? and Why does the
two-oscillation model predict the specific pattern of results more
precisely than the one-oscillation model?

Insight into both questions is gained from Figure 21. Panel A
shows focus, k, as it evolves over trials within the four sessions for
the single-oscillator simulation; Panel B shows two focus vari-
ables, k, and k,, for the two-oscillator simulation in the same
conditions (« of Panel A should be compared with k, of Panel B).
For both the one- and the two-oscillation models, note that atten-
tional focus was greatest in the RR-R session, lowest in the IR-I
session, and intermediate in the mixed sessions. Greater focus in
the RR-R session means greater temporal acuity than in other
conditions. The fact that x values persist over trials involving
different patterns explains why both models predict the main effect
of session context as well as certain carryover effects, such as IR
to R patterns. Of course, attentional focus depends on attentional
coordination, which is good with regular patterns and very poor
with irregular ones.

Next, we attack the more subtle issue of why Simulation 3B
predicted the results of this experiment more precisely than Sim-
ulation 3A. Both attentional focus and attentional coordination
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Figure 20. Predictions of two models for data presented in Figure 19. A: Simulation 3A, the single-oscillator
model. B: Simulation 3B, the two-oscillator model. R = regular; RR = regular rhythm; PC = proportion correct;
I = irregular; IR = irregular rhythm.



148

focus

focus

focus

focus

.06

.06

Figure 21.

LARGE AND JONES

One Oscillator Model

10

20 30
trial number

40

50

.06

0 10 20 30 40 50
trial number

Two Oscillator Model

10

20 30
trial number

40

50

.06

X

L)
N A i ;/\ P .
0 10 20 0 40 50
trial number

Predicted changes in focus over the 48 trials in a session for each of the four session conditions of

Experiment 3 as the model responds to both pattern types within a session. Values of the focus variable, k, for
the one-oscillator model (A) should be compared with those of k, for O, in the two-oscillator model (B). RR =
regular rhythm; R = regular; I = irregular; IR = irregular rhythm.



DYNAMICS OF ATTENDING 149

play a role here. Consider first that the two-oscillation model
predicted poorer performance than the one-oscillation model on
regular patterns. The main reason for this is attentional focus. Note
that in Figure 21 focus, k, for the single oscillation (Panel A;
RR-R session) assumes higher preasymptotic values than the
corresponding focus variable for the two-oscillator simulation,
(Panel B; RR-R session). Attentional focus adapts more slowly in
the two-oscillation model because the two oscillations share avail-
able information about phase variability, a constraint added by the
expectation-maximization coefficient of Equation 10.

Next, consider that the two-oscillation model also predicts better
performance on irregular sequences than does the one-oscillation
model. Differences in attentional focus figure into the explanation
as well, but they arise from a different source. Note, for instance,
that in the RR-I session, «, ultimately reaches a higher value than
k. In this case, however, the increment in performance cannot be
attributed to this final value alone, because «, adapts more slowly
than k. Rather, this higher asymptotic value points to the true
reason: improved synchronization with the irregular sequences. In
the one-oscillation model, synchronization with irregular se-
quences is almost equivalent to performance of an uncoupled
oscillator (e.g., Simulation 1A). However, in the two-oscillation
model, internal coupling between O, and O, improves the syn-
chronization of O, to P,. In other words, with irregular sequences,
the two-oscillation model is superior mainly because the presence
of O, renders the temporal targeting of the pulse by O, more
effective.

In summary, a two-oscillation model nicely accommodates the
effects of both pattern and session context on time discrimination.
Although the present model represents the simplest form of inter-
nal coupling between attending rhythms, it correctly described
both differences between regular and irregular rhythmical se-
quences and some important session context effects. Most intrigu-
ing is the discovery that the two-oscillation model actually—and
correctly—predicts poorer performance on regular patterns (RR
and R) than does the single-oscillation model.

General Discussion

At the outset, we asked how listeners apprehend rhythmic struc-
ture in natural events while at the same time responding meaning-
fully and adaptively to temporal fluctuations. By adopting a dy-
namic attending approach, we think we have made progress in
answering this question. The approach maintains that external
rhythms drive attending, permitting enhanced selective attending
in time. It also assumes that attending can be “tuned” in that it
adapts over time to changes in event structure. This implies that the
temporal structure of events governs the ability to attend. But
temporal event structure is seen to have systematic effects on
human behavior that differ depending on the task (e.g., time
discrimination, time judgment, real-time tracking, or recall). In this
section, we focus largely on implications of the theory for issues of
temporal structure, attentional control, and general models of
attending oscillations.

Temporal Structure

Because our model is rooted in the time domain, a logical first
step is to apply it to judgments about that domain and, in partic-

ular, to listeners’ sensitivity to an event’s interval time structure.
Although our primary aim has been to use perceptions of time
intervals and related tasks as barometers of attentional entrain-
ment, the resulting theory also offers a new slant on the psycho-
physics of time discrimination and the Weber fraction.

Psychophysical methodologies commonly treat the observed
Weber fraction, JND/t, as a ratio of two relatively invariant quan-
tities within a session or trial. Nevertheless, it is already well
established that temporal acuity improves with practice (e.g.,
Watson, 1987). Our theory implies that both the numerator and
denominator of a Weber fraction change not only with experience
but also with event structure. For example, a JND may be consid-
ered to be a function of changing attentional focus associated with
an ongoing oscillation. In addition, we have assumed (Experi-
ments 1 and 3) that a listener’s temporal referent, usually denoted
by ¢, is in fact the period of a prominent oscillation (i.e., ¢ = p).
In short, both referent period and attentional focus adapt in our
model. Furthermore, the model incorporates phase, which is not
commonly addressed in Weber-law models. This rationale leads to
predictions of the time discrimination thresholds observed in Ex-
periment 1. More generally, this approach offers a dynamic frame-
work within which to study listeners’ changing perceptions of
event time structure.

Is Entrained Oscillation Warranted?

The adaptive qualities of driven nonlinear oscillation distinguish
our approach from beat-based coding models involving fixed time
intervals (e.g., Povel & Essens, 1985). Because the oscillation is
inherently flexible, it offers malleable phase and period absent in
typical temporal coding models. Experiment 1 most clearly illus-
trates this. Assuming that the referent oscillation carries the “beat,”
phase and period adapt in response to changes in tempo. Experi-
ment 3 shows that similar flexibility resides in the tracking behav-
ior of internally coupled oscillations, but here additional con-
straints on adaptability are evident in the operation of internal
couplings that ensure rhythmic ratios. The two-oscillation model
simultaneously responds to rate modulations and other forms of
rhythmic flexibility while incorporating constraints that reflect
rhythmic form.

These features enable us to address questions about oscillators
and time discrimination, namely that a referent oscillator is nec-
essarily unresponsive to out-of-phase event markers (e.g., Ivry &
Hazeltine, 1995; Keele et al., 1989). According to this criticism,
oscillator models of time perception incorrectly predict poor tem-
poral acuity in sequences comprising IOI repetitions that contain a
single phase shift. Presumably, this is because a repeated interval
induces an oscillator of fixed phase and period that is thrown
permanently off track by a single phase perturbation. Conse-
quently, Keele et al. (1989) argued that a repeating time interval
evokes neither an internal clock (e.g., Povel & Essens, 1985) nor
an oscillator mechanism. In fact, they maintained that repetitions
of a given IOI produce good acuity not because they form an
isochronous pattern but because each repetition strengthens a
memory code for a single time interval.

Two points are relevant to this criticism. First, effects of phase
shifts on temporal acuity are by no means clear cut. McAuley
(1996) has shown that a single phase shift can influence acuity
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judgments; moreover, the experiments presented here all illustrate,
in various ways, the effect of phase on temporal acuity. Second,
coupled oscillation is not the same concept as a fixed clock.
Whereas an uncoupled oscillation, or fixed clock, is indeed thrown
off track by a single phase shift (as indicated in Figure 6, Panels
A-C), a coupled oscillation (e.g., Figure 8, Panels A-C) quickly
adapts to such perturbations. In Experiment 1, for instance, the
model remained on track by adjusting in real time to successive
perturbations. Simulated acuity remains fairly good in conditions
with relatively small phase shifts (low rate modulations), declining
only with many relatively large perturbations. This prediction
matches the responses of listeners well. Models that incorporate
two (or more) jointly active oscillations are still more flexible in
these respects (see also Large, 1994; Large & Palmer, 1999).

Temporal Order and Sequence Structure

An alternative explanation of the perception and tracking of
dynamic events suggests that our treatment of time and temporal
structure is misguided. Perhaps the necessary structure resides not
in the time domain at all but in the structure of the sequences that
occupy time.

Lashley (1951) proposed an overarching mental scheme in
which rhythm directs serial behavior. By contrast, Chomsky’s
(1957) manifesto on transformational grammars emphasized the
complexity of sequential structures. Chomsky’s approach has in-
fluenced many thinkers to abstract out interval and ratio time
relationships and focus exclusively on the temporal order of ele-
ments in a complex event such as a word or sentence. This
approach was embodied in early memory models that linked
sequence retention to the encoding of sequences via sets of gram-
matical rules (Deutsch & Feroe, 1981; Estes, 1972; Martin, 1972;
Restle, 1970; Simon, 1972; see Jones, 1974, 1981, for reviews).
Although more recent connectionist models have shifted away
from explicit grammatical rules and memory-based explanations,
they retain a focus on sequence structure (e.g., Elman, 1990;
Jordan, 1986; Mozer, 1992; Williams & Zipser, 1989). Elman’s
(1990) simple recurrent network (SRN) represents serial order
relationships among, say, words of a sentence as a pattern of
activations spatially distributed over a set of short-term memory
(context) nodes. For example, Elman (1991) focused exclusively
on the ability of the network to learn complex grammatical struc-
tures; the job of the network is to learn to predict what the next
word of the sentence will be. However, no attempt is made to
model, for example, when the next element is expected to occur.

This emphasis on ordinal relationships to the exclusion of other
temporal relationships leads to difficulties if such models are
adapted to natural events that unfold in real time (e.g., events that
display the types of temporal flexibility investigated here). Exper-
imental investigations into the temporal processing capabilities of
the SRN, for example, reveal that for complex sequences such
networks do not show temporal generalization (Liu, Wang, &
Ahalt, 1996). When trained at one or two sequence rates, they fail
to recognize the same sequence presented at novel rates.

Extensions of these models have been proposed to deal with
such timing issues (e.g., Cotirell, Nguyen, & Tsung, 1993; de
Vries & Principe, 1992; Tank & Hopfield, 1987). For example,
one account of acquired rate sensitivity uses an augmented SRN

network to describe adaptive tracking of temporally modulated
events (Cottrell et al., 1993; Nguyen & Cottrell, 1994). This
network is trained on stationary events (¢.g., locomotion or speech
patterns) presented at some “normal” rate. Unlike the typical SRN,
however, once it has learned a sequence it can adapt to changes in
presentation rate. This is accomplished by predicting the next
element in the sequence and using the difference between pre-
dicted and actual onset time of that element to adapt time constants
that control processing rate. In other words, the network relies on
sequence structure (i.e., the ordering of elements) to determine
changes in sequence rate. The main drawback of this approach, of
course, is that it works only for learned sequences. But there are
other difficulties as well. First, learning a sequence requires the
presentation of a canonically timed training sequence, which is
problematic. Second, a change in rhythm cannot be distinguished
from a change in rate because the network uses only the order of
sequence elements to determine timing (i.e., the network is both
rate and rhythm invariant). Thus, it does not capture peopie’s
sensitivity to the rhythm of a previously learned event (e.g., Boltz,
1992; Jones & Ralston, 1991).

Undeniably, serial competency is crucial to language, music,
and other temporal events. Clearly, it is adaptive that people often
continue to recognize an event when its rate changes. Neverthe-
less, a disregard of the richness of event time structure in favor of
serial order seems premature. Even when serial ordering does not
change, variations in rhythm (as well as large rate changes) sig-
nificantly affect recognition (Boltz, 1992; Handel, 1989; Jones &
Ralston, 1991; Kidd & Watson, 1990). In addition, anticipatory
order errors often occur in productions of speech and music,
reflecting a temporal importation of future elements into the
present. Significantly, it appears that these mistakes are more
common among elements occupying similar rhythmical locations
(Ryan, 1969a, 1969b), suggesting an intimate connection between
temporal structure and serial order.

Lashley’s prescient observations emphasized that rhythm and
interval time structure play a role in anticipatory errors (also see
Martin, 1972). Perhaps he was on the right track. But time struc-
ture is important not simply for insights into the serial order
problem; it is important in its own right. Time is an integral part of
event structure and of meaning. Many events (e.g., speech, music,
and body gestures) are not merely serially ordered but are tempo-
rally coherent as well. A change in the rhythm of such sequences
can signal a change in meaning and implication. Thus, a sense of
rhythmic structure is necessary to interpret a speaker’s hesitations,
to recognize a variation on a melodic theme, and so forth.

Attention

We have described attending in terms of the dynamics of atten-
tional entrainment. Because the external rhythm is based on the
time structure of a distal event, our approach views attention as
heavily influenced by environmental patterning. It is possible to
identify two related ways in which event structure exerts control
over dynamic attending. These derive, respectively, from the way
a driven nonlinear oscillation generates expectancies in time and
from its subsequent reactions to violations of these expectancies.
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Long-Term Attentional Control: Expectancies

The self-sustaining oscillation is an engine for generating goal-
oriented expectancies. That is, each attending rhythm displays an
underlying predisposition, or attentional set, that guides anticipa-
tions every step of the way. Over the long haul, an attractor
controls this process, ensuring that expectancies are well coordi-
nated with an event. Thus, attractor states establish long-term
control of attending; they reflect a goal state of minimum disparity
between the period and phase of an attentional rhythm and those of
the unfolding event. When multiple oscillations come into play, a
stable relationship also emerges among internal oscillations, one
that can reflect the form of the external rhythm dynamically, for
instance, in certain phase and period ratios.

The attentional tuning that emerges from long-term behavior is
reminiscent of Gibson’s unconventional view of attending as a
mode of “educating of the senses.” Gibson (1966) saw attention as
a vehicle for perceptual refinement in that it served to position a
perceiver optimally for detecting finer and finer differences (pp.
51-52, 269-271). In a parallel way, attentional targeting becomes
more and more focused as temporal expectancies gravitate to an
optimal temporal positioning of attentional energy. Effectively,
this means that successively finer discriminations of temporal
nuances within an attended event become possible.

This aspect of the theory also echoes the more current idea that
attentional set introduces slow and persisting selective responding.
However, the picture we offer connects long-term attentional con-
trol to environmental structure itself. That is, we do not consider
how attentional set is determined, for instance, by instructions to
ignore certain aspects of an unfolding event. In principle, such a
feature can be accommodated, but current evidence using auditory
sequences, in which both attentional set (instructions to attend
selectively vs. nonselectively) and pattern structure was varied,
suggests that structural manipulations of attending far outweigh
those introduced by attentional set instructions (e.g., Jones, Ja-
gacinski, Yee, Floyd, & Klapp, 1995). Accordingly, our model has
focused on control of attention and adaptation to external time
structure. We assume that such oscillations rhythmically carry
attention into the future over both long and short time periods,
realizing future-oriented attending (Jones & Boltz, 1989).

Short-Term Attentional Control: Expectancy Violations

The movement toward an attractor comprises many small ad-
aptations. These adaptive responses represent fast, transient adjust-
ment to novel or unexpected timing. Thus, if long-term attentional
control reflects expectancies, then short-term control of attending
reflects expectancy violations. Both are influenced by event struc-
ture. That is, in spite of the persistent pull of an attractor on the
system, any momentary impact of an unexpected onset within an
external rhythm can perturb the attending rhythm, forcing it in a
different direction. To be sure, in the long run, stability ensures
that an adaptive oscillation returns to its goal. But two aspects of
the transient response to sudden or unexpected onsets are worth
underlining.

The first aspect is simply that a temporal contrast, arising from
an advanced or delayed onset in the external rhythm, is the
occasion for disturbing the attending rhythm. The magnitude of

such an expectancy violation at any point in time in an unfolding
sequence is gauged by the attentional pulse. In a detection task, for
instance, this magnitude determines how noticeable or novel an
unexpected onset seems, with large deviations more likely than
small ones to be judged as changes in an event’s time structure. A
second aspect of the transient response to a time change is its
adaptive character. Following Equations 3 and 4, the subsequent
reaction to such a “surprise” is a rapid attentional shift in time.
Specifically, the shift is operationalized as an adjustment of phase
and period in the direction of the unexpected time change. More-
over, the degree of shift is related to the degree of change in
timing. In these respects, the response to expectancy violations
instantiates a time-domain version of attentional capture.

The dual aspects of expectancy and expectancy violations, as
they are displayed by the way an external rhythm drives an
attending rhythm, echo classic features associated with attention.
In other terms, they embody, respectively, anticipation and sur-
prise. This is a dichotomy found in various theories in which
attention is associated with preparation, on the one hand, and with
response to change (or novelty), on the other (Neumann, 1996; van
der Molen, 1996). For instance, the response to novelty is funda-
mental to Berlyne’s theory (1974) and Sokolov’s (1975) analysis
of the orienting response, both of which have been interpreted in
terms of involuntary attention to change (Eimer, Nattkemper,
Schroger, & Prinz, 1996; cf. Posner, 1980). The response to
novelty is clear in our approach: It is an attentional rhythm’s
adaptation in response to an unexpected time change. At least with
respect to timing, this quantifies and clarifies that a response to
novelty is predicated on a defined expectancy. Thus, in Experi-
ment 1 patterns with little or no rate modulation generated strong,
narrowly focused expectancies for “when” future onsets should
occur, thereby setting the stage for a listener to notice even quite
small time changes as deviant or novel.

Attention or Perception?

We claim to be describing the dynamics of attending, but is this
really a theory of attending? After all, time discrimination is a
perceptual task. So why is this not a theory of perception? As we
have acknowledged, our theory addresses both perception and
attention. However, as in many cases, these constructs are inter-
dependent and difficult to tease apart (cf. Bregman, 1990; Kahne-
man, 1973; A. Treisman, 1992). Defining either attention or per-
ception is daunting because such definitions quickly become
theories. In this vein, our approach suggests new ways to conceive
of standard attentional and perceptual phenomena.

In spite of its name, the attentional pulse expresses important
aspects of perceiving because it suggests circumstances that are
most likely to render accurate perceptual reports. Specifically,
given a particular difference between two time intervals, correct
reports about whether they are similar (same) or not (different)
depend on two aspects of the attentional pulse. First, perceiving
both identity and distinctiveness among time intervals involves the
locus of an attentional pulse. Listeners are best at these judgments
when both standard and comparison intervals begin or end at
expected temporal locations. This is evident from the data of
Experiment 2, in which time judgments were poor with unexpected
standard intervals. Simply put, if one is appropriately primed for
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when something will occur, overall perceptual categorization is
enhanced.

The second feature of the pulse that influences perceiving is its
extent relative to some time change. Good attentional coordination
leads to a narrow attentional pulse, meaning that in these contexts
a given time change becomes more noticeable. Conversely, in
sequences that afford only moderate coordination, the pulse wid-
ens such that the same time change may go unnoticed. In other
words, regular thythms encourage sharper selective attending in
time; this, in turn, establishes more rigorous criteria for similarity
and differences among time intervals. Thus, in Experiments 1
and .3, contextual irregularities in some patterns produced poorer
focus. Unruly sequences in Experiment 1 produced poor atten-
tional focus and low temporal acuity (thresholds as high as 0.10),
whereas the more regular sequences produced greater attentional
focus and better acuity (thresholds between 0.02 and 0.03). We
underscore that changes in focus derive from variability in relative
phase, not variability of the 101 sequence. Thus, in Experiment 3,
the clear rhythmic regularity of RR patterns introduced marked 101
variability, but this neither adversely affected synchronization nor
lowered performance. This view of perception clearly emphasizes
the relational nature of perceiving: A to-be-detected time change is
gauged relative to the maximally expected phase of a single
oscillation.

Clearly, anticipation and expectancy play into this approach
to perception. Variations in attentional focus correspond to
variations in the width of an expectancy region and the selective
distribution of attentional energy in time. Others have also
proposed a variable attentional focus (e.g., Ericksen & St.
James, 1986), but these proposals concern the distribution of
visual attention in space. Our theory describes attentional en-
ergy distributed in time; it is unusual in linking focal variability
to violations of temporal expectancies.

Attention Tasks

Attentional tracking involves attentional targeting and the coor-
dination of internal and external rhythms. It is difficult to directly
evaluate because it involves momentary and unobservable changes
in postulated internal states. Most real-time tracking situations
involve either overt motor tracking or event-related potential
(ERP) monitoring of cortical activity. However, both paradigms
present difficulties for the present approach.

Motor performance, by definition, engages overt responding,
thus offering the advantages of direct measurement of a behavioral
time series. This has enabled demonstrations of bistability and
hysteresis in rhythmic movement (e.g., Kelso & Scholz, 1985), as
well as other features that directly implicate nonlinear dynamics
(e.g., Haken, Kelso, & Bunz, 1985; Schoner, Haken, & Kelso,
1986). Other studies lend support to the hypothesis that neuromo-
tor oscillations follow the timing of input signals (e.g., Schmidt,
Carello, & Turvey, 1990). Dynamical models have been proposed
to describe coordinated motor responses to simple auditory pat-
terns (cf. Kelso et al., 1990; Schoner & Kelso, 1988a, 1988b). In
spirit, the latter approaches are similar to ours, but they differ in at
least two critical ways. First, our model describes tracking of more
complex, rhythmically patterned sequences that may be nonsta-
tionary. Second, we address attentional tracking of auditory pat-

terns. Indeed, the dynamics of attending may be preliminary to
those of actions in that they prepare the motor system to respond
(cf. Allport, 1989). We aim to show that entrainment is not specific
to overt motor responding but, rather, occurs in various attention
tasks as well. In short, we seek to tap directly into the dynamics of
attending using paradigms that are uncontaminated by motor
activity.

Tracking tasks that appear less contaminated by overt respond-
ing are those involving ERPs. These tasks rely on paradigms such
as the odd-ball paradigm (Donchin, Ritter, & McCallum, 1978) or
attentional filtering (Hillyard, Hink, Schewent, & Picton, 1973; see
Naatanen, 1990, for a review) in which the recorded components
of attentional cortical responses (e.g., N1, P2, or P300) are linked
to probabilistic aspects of stimulus sequences (Donchin & Coles,
1988; Verleger, 1988). Thus, Naatanen and his colleagues (Naa-~
tanen, Schroger, Karakas, Tervaniemi, & Paavilainen, 1993) re-
corded attentional tracking of tone sequences and found that lis-
teners’ ERPs to standard (frequent) and deviant (infrequent)
sequences differed systematically; the ERP component reflecting
this difference (i.e., mismatch negativity) peaked at 100-200 ms
from the onset of a changed tone frequency in the deviant se-
quence. Although these tasks offer great potential for evaluating
the entrainment hypothesis, they also present three obstacles. First,
the mapping of different ERP components to the model variables
(phase, period, and focus) is unclear. Second, clean assessments of
ERPs emerge only when electroencephalograph changes are aver-
aged over hundreds of presentations of a single stationary event,
whereas our most informative tracking predictions derive from
moment-to-moment adaptations of the oscillation in response to
nonstationary events. Finally, it is unclear how ERP components
relate to detection of small time changes.

Toward General Oscillation Models

The most general version of our theory posits the joint activity
of several attending rhythms. We expect that such models will be
especially useful in explaining responses to complex rhythmical
events, as Experiment 3 illustrates. The most important distinction
between a multiple-oscillation model and a single-oscillation
model is that only the former can display complex forms of
coordination among internal attending rhythms. Internal interac-
tions among attending oscillations offer great explanatory potential
that can yield both unusual and powerful predictions. An unusual
prediction is illustrated in our discovery that a two-oscillation
model provides a better fit to performance with rhythmical se-
quences than a single-oscillation version because the latter predicts
performance that is too good. It turns out that interactions among
oscillations can moderate performance. Alternatively, patterns of
internal couplings can provide predictions about subgroups of
oscillations that mutually interact in beneficial ways. The multiple-
oscillation approach also holds significance for understanding
other phenomena such as the perception of metrical relationships
and the perception of figure versus ground.

Meter and Expressive Nuance

The puzzle posed at the outset of this article is at the heart of
meter perception. In musical performances, neither strict period-
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icity nor precise metrical time ratios (e.g., 2:1 or 3:1) are realized.
The challenge facing current theories of meter perception is that
performers flexibly modulate the rate of the performance to create
emphasis and expressive nuance (Clarke, 1985; Drake & Palmer,
1993; Palmer, 1989; Shaffer, Clarke, & Todd, 1985; N. P. M.
Todd, 1985).

The solution proposed by Large and Kolen (1995; Large, 1994)
assumes that multiple, simply coupled oscillators track multiple
periodicities in complex rhythms. Meter is associated with phase
and period ratios; the duple meter rhythm used in Experiment 3,
for instance, corresponds to a 2:1 ratio among periodicities. This
and other simple integer ratios are more likely to result in stable
metric perceptions (Large & Kolen, 1995; see also Jones, 1976).
However, these models did not address time discrimination. Our
account does address this factor. It suggests that the noticeability
of various temporal nuances is affected by musical rubato, namely
rate modulation (Experiment 1), and also by higher order rhythmic
patterning (Experiment 3). In the latter case, interactions among
internal oscillations not only affect the noticeability of certain time
changes but dynamically express the metrical structure. Related
work also suggests that the perception of metrical patterns can be
modeled as multiple oscillations and that expectancy violation
figures in the perception of phrase structure and in the identifica-
tion of a melody among several voices (Large & Palmer, 1999).
Such models offer substantial explanatory power for understand-
ing how people perceive and produce time patterns within complex
rhythmical events.

Binding and Figure—Ground Phenomena

Neural oscillation has been proposed as a solution to the binding
problem that arises in distributed representation theories of visual
object and scene perception. In these theories, mental features
(e.g., vertices or edges) that denote the same object are spatially
distributed. To perceive an integrated object, neurally distributed
features are presumed to coalesce (i.e., bind) whenever outputs of
the relevant feature units oscillate in phase. Thus, phase synchrony
of oscillating feature-specific units is a binding agent. The flip side
of the binding problem, the segregation problem, concemns the
perception of a figure as distinct from its background. This prob-
lem is also solved if it is assumed that oscillating feature units that
represent a figure (a single object) are out of phase with those of
the background (or other objects; e.g., Hummel & Biederman,
1992; Terman & Wang, 1995; see also von der Malsberg &
Schneider, 1986).

Our approach differs from theories of visual feature binding in
its interpretation of the relationship between internal oscillations
and stimulus structure. To our knowledge, distributed representa-
tion theories do not propose that the time structure of the stimulus
(e.g., frequency or phase relationships of light that falls on the
retina) meaningfully relates to the frequency or phase of interna}
oscillations involved in binding. Features such as proximity, tex-
ture, and color, which are essentially nontemporal, have no direct
bearing on oscillator phase and period. Rather, they are simply
cues postulated to generate internal synchronization. Synchrony
itself is proposed to stem from adjacency in “feature topic” neural
maps (e.g., see Terman & Wang, 1996). In other words, internal
oscillations do not entrain to external time patterns; instead, they

provide an on—off implementation for feature integration in which
integration itself derives from other principles (Tesar & Smolen-
sky, 1994). Thus, our approach is quite different in its stance that
organisms are directly sensitive to the temporal structure of events.

Our view of multiple attending rhythms agrees with the binding
rationale in the sense that synchrony forms a basis for perceptual
integration. However, phase and period relationships within the
stimulus itself provide the basis for integration. In dynamic events,
an integrated figural form usually involves the presence of a stable
rhythmic pattern comprising various related periodicities. Thus, to
perceive a time pattern as an intact figure, one experiences its
constituent event periods as bound together in a stable and inte-
grated way. For instance, the compelling RR rhythm of Experi-
ment 3 comprised two phase-locked periodicities in which the
period of one component was twice that of the other. These
properties directly lead to its perception as a stable rhythmic form.
In attending to such events, the perception of an integrated figure
derives from synchronous activities of internal oscillations. Syn-
chronicity among different external periodicities within a rhythmic
figure drives the establishment of stable synchronous relationships
among internal oscillations; these relationships, in turn, determine
integrated percepts (Jones, 1976).

Concluding Remarks

In the larger scheme, this framework suggests that attending has
a participatory quality. Whether one is captivated by an amusing
story, excited by a fast-moving soccer game, or inspired by a
masterfully conducted symphony, one is engaged by distal hap-
penings that project complex rhythmic flow patterns comprising
multiple related temporal components. The time pattern of an
event reliably shapes a rhythm in the ambient flow, and the
coordination of attention with the pulsating flow pattern connects
the attender to the originating event in a rather direct fashion. Such
patterns afford multiple opportunities for the engagement of atten-
tion because they comprise lawfully related component periodici-
ties. At each of several time scales, these events project flexibly
evolving periodicities comprising a series of distinct onsets that
parallel the patterns studied here with single- and multiple-
oscillation models. Effectively, the presence of many different
periodicities within structured rhythms provides a means of teth-
ering an attender to a distal event. Via entrainment, a complex of
internal oscillations may be shaped by the time structure of rhyth-
mically intricate events, and events can be attended to more or less
efficiently depending on their timing properties. Furthermore, the
joint coordination of active oscillations tracking different flow
periods offers a means of directly “knowing” about that event.
That is, coordinated attending rhythms fashion a crude mime of an
event’s rhythm, an adaptive attentional cartoon of its shape in time.
Thus, by virtue of dynamic mimicry, the attender “participates” in
the rhythm of a remote event. Entrainment means that parts of an
attender literally “match up” with certain time spans in the remote
event, and in tHis sense attending is participatory. The resulting
synchrony with temporally structured events functions as a form of
direct knowing.
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Appendix A

Circle Map Dynamics

We first consider the one-dimensional phase-coupled system of Equa-
tion 3. To simplify this system for analysis, we replace the series of
interonset intervals ¢, , — ¢, with the single interonset interval g, repre-
senting a stationary driving rhythm with a fixed period. Equation 3 be-
comes

1 (27
¢*=§—1;aszn T'EQ . (A3)

In general, the location of the fixed points depends on both 14 and Q.
However, when p = ¢, {} = 0, and there is an attractor at ¢,, = 0 and a
repellor at ¢, = 0.5.

Next, consider the two-dimensional system described by the addition of

Goi1 = b, + 127 - ;—;sin%rd),, (mod_y5451), (A1) period coupling (Equation 4) to the model. The equation
s L ' M .
which is the well-known sine circle map. To determine the location (phase) = P*< 1+ ﬁs in2 ”"'4’*) (Ad)
of the fixed points, we assume equilibrium Gi.e., ¢,,, = ¢, = ¢,) and
define {} = ¢/p (mod_, 54 51). We then solve yields ¢, = 0, and substituting this result into Equation A2, we find
Px=q. (A5)
b=y + Q- ;’—;sin27r¢* (A2) *

Thus, the attractor for the phase-coupled and period-coupled model (Equa-

for ¢,. This gives fixed points at tion 3 plus Equation 4) is ¢, = 0, p, =gq.
Appendix B

Circular Statistics and the von Mises Distribution

Because relative phase is a circular variable, it is described via circular
statistics (thorough discussions can be found in Batschelet, 1981; Fisher,
1993; and Mardia, 1972). The most important difference between circular
and linear statistics is that, in circular statistics, each sample point is treated
as a unit vector. Thus, the mean of a set of sample points is a vector, m,
with polar coordinates r and ¢, representing the mean vector length and
mean phase angle, respectively, of the sample. Mean vector length,

1 « N
r=— Ycos2am(¢ - &), (B1)

i=1

is a measure of dispersion about the mean. It can also be used as a measure
of synchronization strength (Goldberg & Brown, 1969).

We model attentional energy as a periodic probability density, the von
Mises distribution:

1
f19) = 1 explcos2n(e - 0)], (B2)

with two parameters, 6 and k (0 < «). The function takes on its maximum
value at ¢ = 6 (i.e., 6 is the mode), and the distribution is symmetric about
the mode. Because, in our application, ¢ represents the phase of a phase-
coupled and period-coupled oscillation, we assume that § = ¢ = 0 (i.e.,
that the system is in equilibrium). The larger the «, the more concentrated
the distribution about the mean; hence, k is called the concentration
parameter (Figure 9A). In our model, k captures focus of attention; it is a
third state variable that adapts in response to the structure of an external
rhythm. The process of adaptation is related to maximum-likelihood esti-
mation of the concentration parameter of a von Mises distribution.

Adaptation of Attentional Focus

The maximum-likelihood estimate of the concentration parameter, &, of
a von Mises distribution is given by the solution to the equation

Q) 1
AR) = 7 = — Dicos2md, (B3)

(Batschelet, 1981). The right-hand side of this equation is the mean vector
length of the sample, r, introduced earlier (Equation B1). In this case,
however, we estimate vector strength incrementally using

Snr1 = Sp ~ (s, — cos2w,). (B4)

We call this measure synchronization strength, written s, to emphasize that
it is an incremental approximation to vector strength, r. Next, « is deter-
mined as

Kn+1 = A_I[H(b’snﬂ)]’ (B5)

where A~ '(x) can be soived numerically or by table lookup (Batschelet,
1981). The adaptation rate 0 < 7, < 1 determines an adaptation time
constant, with smaller values approximating r over longer time periods.
Equation B4 has a fixed point at s, = cos 2mwd,, so when there is no
variability in the stimulus, s = 1. Because A~ *(1) = o, we fix a bound
s using a hard limit function H(b, s). Thus, the maximum value of k is
A~!(b), placing an upper limit for attentional focus. The simulations
described in the text used a value of b = 0.95.

According to the current model, an event onset is perceived as the phase
of the onset relative to an ongoing oscillation. The von Mises model of an
attentional pulse permits predictions about the relative noticeability of time
changes, taking into account both relative phase and level of uncertainty.
Here certainty corresponds to attentional focus, k, which reflects the
quality of synchronization with an external rhythm.

Predicting Performance in a 2AFC Task

In Experiments 1 and 3, participants were asked to judge in which of two
locations a time change occurs. We modeled their responses by developing
an expression for the proportion of tones in location » whose onset times
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will be detected as deviating from expectated onset times. This is twice the
area under the curve from the mode of the attentional pulse to 1,l:

bl
Ppmy = 2[ Ax)dx. (B6)
0

Two proportions are calculated in this way, one for each of two test
regions. The proportion of time shifts that will be detected in the test region
where the shift truly occurs is notated Pz, and the proportion of “false
shifts” (induced by contextual modulations) that will be detected in the
alternate test region is notated Ppr,. Scores for each of two test regions
are converted to a single PC score for each 2AFC trial by combining the
two measures to calculate the overall proportion of correct responses on a
given trial:

Po — Poy + 1
po=-20_"PB 2”’ ) (BT

Predicting Performance on an Interval Classification Task

Next we describe how to predict performance on a task in which the
participant is asked to judge whether a comparison interval is the same as,
longer than, or shorter than a standard interval (Experiment 2). First, the
proportion of intervals heard to be the same as, early, or late is derived

from P, (Equation B6), the proportion of intervals detected to deviate from
the standard:

Ps=1- Py,

n
Py = Pu( f f(x)dX),
-0.5
b
Py= PD( 1- j f(x)dx) .
-0.5

Next, the proportion of intervals correctly classified based on what the
participant hears is as follows:
if interval same as standard

Ps
Py= ( Py if interval shorter than standard
P, if interval longer than standard.

and

Finally, the proportion of correct responses is P = .33 + Py(Py —
.33), where .33 is the proportion of guessed classifications and P,,,, is the
maximum proportion of correct classifications observed over all sessions in
the experiment.

’ Appendix C

A Two-Oscillator Model

When a stimulus comprises more than a single periodicity, we assume
that more than a single oscillation participates in attentional tracking. Here
we present a simple two-oscillation model useful in modeling responses to
patterns that comprise two periodicities. First we analyze

" w4 n n
= o + P a (o — 28"y (mod_g5051)

and

n n q n n
¢’(2 = ¢(2) + P‘z - az(d’(z) - 0~5¢(1 )) (mOd—O.S,O.Sl)v (C1)

which corresponds to the system of Equation 8 without external phase
coupling. If we define internal relative phase as = ¢; — 2¢, and assume
that p, = p,, then this system can be rewritten as

4’(1"”) = ¢(1") +0- 041‘1’(") (mod_45051)

and

Q
¢(z"+” = 4’(2") + 2 + 0‘24’(") (mod_g5,.051).

We are interested in the evolution of internal relative phase. Using the
identity ¢, = ¢ + 2¢,, we write D + 267D = P + Q —
alw("’, and, after some manipulation, we arrive at

w(n-i—l) — ‘l’(") —(a; + az)ll’(n)- (C2)

Thus, this system has a fixed point at ¢* = 0 that is stable for 0 < a,
+ a, < 2. When «; + a, = 1, the system relaxes to the attractor after one
cycle. We use this discrete, linear internal coupling to approximate a
system in which internal coupling brings internal oscillation into coordi-
nation within a single stimulus cycle. The full system is similar to Equation
C1 with the addition of the external coupling. We think of external

coupling as delivering perturbations to the internally coupled system
(Equation Cl):

BV = ¢+ L~ F(g) ~ ana(@.k) (8 — 26{)

- (mod_g5051)

and
n n q n n n n
G5 = 6+ - = F(4:) — an(6™") () — 0.56(")

* (mOd—o.s.o.sl)- (C3)

We assume a single coupling parameter, a, and the term 7,( ¢, &) is defined
in the next section. Here we simply note that 2 7,(d, k) = 1, satisfying
the preceding stability condition.

Period coupling is defined similarly to phase coupling, and the attractor
for interna] relative period can be worked out similarly to internal relative
phase:

Pl = pi” + pn,F (1) — arm(d™ k™) (pi” — 0.5p8")

and

Pyt = pi + pPn,F(957) — ar(6™ k) (py” - 2p17).
(80))

Estimating Two Concentration Parameters

To estimate the concentration parameters for two von Mises distribu-
tions simultaneously, we first define a mixture of von Mises distributions.
The unimodal von Mises distribution is given by

1
i) = To(k) explk; cos2mj],
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and a mixture of two multimodal (assuming ¢, = 2¢,) von Mises distri-
butions is given by

2
fdi1) = D wifi(d). (C5)

j=1

Here the vector & = [k, k,] contains the unknown concentration param-
eters. The w; are the mixture weights; we assume w; = w; = 0.5 for
simplicity. The log-likelihood function for Equation CS5 is

N 2
logL = Zlog ijf,(¢.-) (C6)

i=1 i=1

Taking the derivative of Equation C6 with respect to ; and equating the
result to zero, we obtain the likelihood equation

Il(x,-)] o
Io( Kj)
for j = 1, 2, which does not yield an explicit solution. Therefore, we adapt
the expectation-maximization algorithm to the estimation of the concen-
tration parameters for our von Mises mixture. To do this, we pose the
problem as an incomplete-data one by introducing the unobservable or
missing data vector z = (z], ..., 7207, where z; is an M-dimensional
vector of zero—one indicator variables such that z;; = (z,); is one or zero
according to whether ¢; did or did not arise from the jth component of the
mixture.

If the z;; were observable, then the maximum-likelihood of estimate «;
would be given by the solution to the equation

0.57($)
>

i) ©

[cosZmb,- -

Il(Kj) _
IO(Kj) B

(C8)

Y N
Ezﬁ cos2m; /Ez,-,-.
i=0 i=0

The intuition behind Equation C8 is that it is a version of Equation B3
calculated only for those samples (onsets) that arise from the jth component
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of the mixture. In other words, the right-hand side of Equation C8 estimates
the mean vector length, r, for those onsets that belong to periodicity j.

Next, the expectation step requires calculation of the current conditional
expectation of z;; given the observed data, O, where Z;; is the random
variable corresponding to z;;. Now

ElZ0) = priZ; = 110} = 2P
and, by Bayes’s theorem,
" . ijj(d)i)
P = 1(dik™) = k™)’

where 7,(¢;; k™) represents the posterior probability that the ith member
of the sample ¢; belongs to the jth component of the mixture. The
maximization step requires replacing z;; with z(") to give

I (K(n+l))

I (K("+”) EZ(") cos2mjd; /EZ(").

i=0 i=0

(€9

Thus, our incremental estimate of synchronization strength (correspond-
ing to the right-hand side of Equation C9) is

(n+l) = s

) — n,aP 1k (57 — cos2wd™).  (C10)

Note that Equation C10 is similar to Equation B4, with the addition of the
expectation-maximization coefficient, 7,(¢, k). The intuitive interpretation
of Equation C10 is that the contribution of the nth onset to our incremental
estimate of synchronization strength, s, is weighted by the (currently
assessed) posterior probability that event n belongs to periodicity j (this
expectation-maximization coefficient also weights internal coupling in
Equations C3 and C4). Once s has been determined, « is found by using
Equation BS5. The additional factor a'™ is the amplitude of the nth onset,
scaled to the range [0 1]. This reflects that fact that, for complex multi-
periodicity rhythms, onset amplitudes differ.
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