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a b s t r a c t

The auditory nervous system is highly nonlinear. Some nonlinear responses arise through active pro-
cesses in the cochlea, while others may arise in neural populations of the cochlear nucleus, inferior
colliculus and higher auditory areas. In humans, auditory brainstem recordings reveal nonlinear popu-
lation responses to combinations of pure tones, and to musical intervals composed of complex tones. Yet
the biophysical origin of central auditory nonlinearities, their signal processing properties, and their
relationship to auditory perception remain largely unknown. Both stimulus components and nonlinear
resonances are well represented in auditory brainstem nuclei due to neural phase-locking. Recently
mode-locking, a generalization of phase-locking that implies an intrinsically nonlinear processing of
sound, has been observed in mammalian auditory brainstem nuclei. Here we show that a canonical
model of mode-locked neural oscillation predicts the complex nonlinear population responses to musical
intervals that have been observed in the human brainstem. The model makes predictions about auditory
signal processing and perception that are different from traditional delay-based models, and may provide
insight into the nature of auditory population responses. We anticipate that the application of dynamical
systems analysis will provide the starting point for generic models of auditory population dynamics, and
lead to a deeper understanding of nonlinear auditory signal processing possibly arising in excitatory-
inhibitory networks of the central auditory nervous system. This approach has the potential to link
neural dynamics with the perception of pitch, music, and speech, and lead to dynamical models of
auditory system development.

This article is part of a Special Issue entitled <Music: A window into the hearing brain>.
� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Peripheral auditory nonlinearities have received a great deal of
attention in the theoretical literature (Eguíluz et al., 2000; Kern and
Stoop, 2003; Jülicher et al., 2001; Szalai et al., 2013), however, far
less is known about the nature and the role of central auditory
nonlinearities. Nonlinear receptive fields have been found in infe-
rior colliculus of the cat (Escabi and Schreiner, 2002) and gerbil
(Langner, 2007), and in auditory cortex of the cat (Sutter and
Schreiner, 1991) and rhesus monkey (Kikuchi et al., 2011), for
example. Interestingly, nonlinear responses to intervals composed
of pure tones have been found in auditory evoked potentials of
guinea pigs (Chertoff and Hecox, 1990), and nonlinear frequency-
following responses (FFRs) have been observed in human brain-
stem using electroencephalography (EEG) (Galbraith, 1994; Pandya

and Krishnan, 2004; Lee et al., 2009), and in human auditory cortex
using steady-state methods in magnetoencephalography (MEG)
(Purcell et al., 2007). Together these facts pose questions about the
auditory system: What are the generating mechanisms of these
nonlinearities? Do brainstem responses represent only cochlear
mechanics, or does brainstem signal processing play a significant
role? Perhaps we can think of the central auditory system as per-
forming a series of nonlinear transformations of sound. Significant
theoretical advances in the study of neural signal processing will be
necessary to understand how the brain harnesses nonlinear dy-
namics to analyze complex, temporally structured acoustic signals
(Koepsell et al., 2010).

In central auditory circuits, action potentials phase-lock to both
the fine time structure and the temporal envelope modulations of
auditory stimuli at many different levels, including cochlear nu-
cleus, superior olive, inferior colliculus, thalamus, and A1 (Langner,
1992). Traditionally, phase-locked spiking in the central auditory
system is thought to represent an essentially passive transmission
of synchronized basilar membrane motion, as illustrated
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schematically in Fig. 1A (Koepsell et al., 2010). If this is the case,
then nonlinear responses at the level of the brainstem would
represent mainly distortion products that arise in the cochlea. An
alternative possibility is that synchronized neural activity is carried
forward by active circuits in the central auditory system, illustrated
schematically in Fig.1B. If this is the case, nonlinearities observed at
the level of the brainstem might also arise due to mode-locking, a
phenomenon that has been observed in the auditory brainstem
(Large et al., 1998; Laudanski et al., 2010; Arnold and Burkard, 1998,
2000), and is physiologically distinct from the mechanical
compression and half-wave rectification that occurs in the organ of

Corti. Mode-locking is a generalization of phase-locking in which a
periodic stimulus interacts with an intrinsic oscillatory dynamics of
a neuron or neural circuit, causing k cycles of an oscillation to lock
to m cycles of the stimulus, where k and m are integers. In phase-
locking k ¼ m ¼ 1.

Fig. 1C and D illustrate phase- and mode-locking to acoustic
signals in the auditory midbrain of the fish Pollimyrus (Large et al.,
1998). On the left, a neuron produces one action potential for every
cycle of the sinusoidal stimulus (1:1 phase-locking), on the right,
the same neuron produces two action potentials for every cycle of
the sinusoidal stimulus (2:1 mode-locking). Mode-locking to

Fig. 1. Phase & mode locking. (A) Phase-locked spiking in the central auditory system may represent passive transmission of synchronized basilar membrane motion via a labeled
line code. In such a passive model, spiking patterns are transferred directly from layer to layer of the auditory system. (B) Alternatively, synchronized neural activity may be carried
forward by active oscillatory circuits in the central auditory system, which rely on interaction of excitatory and inhibitory subprocesses. (C) Phase-locking (1:1) and (D) mode-
locking (2:1) of an auditory medulla neuron in the fish Pollimyrus to different stimulus frequencies (from Large et al., 1998). (E) Mode locking in a canonical model. Within
each resonance region (shaded), the canonical model mode-locks to external input at the ratio shown in figure (c: coupling strength, f: oscillator’s intrinsic frequency, f0: input
frequency). Insets show the inputs and traces produced by a canonical model.
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acoustic signals has been observed in guinea pig cochlear nucleus
chopper and onset neurons (Laudanski et al., 2010), and mode-
locking to the difference tone of two dichotically presented stim-
ulus frequencies has been observed in vivo and isolated to the
inferior colliculus of the chinchilla (Arnold and Burkard, 1998,
2000). Mode-locked spiking patterns are often observed in vitro
under DC injection (Brumberg and Gutkin, 2007), and active os-
cillations have been observed in vivo in the inferior colliculus of the
chicken (Schwarz et al., 1993). Such observations lead to the pos-
sibility that the nonlinear responses observed in the human audi-
tory brainstem may arise, in part, due to mode-locking
neurodynamics.

Here, we consider nonlinear responses to musical intervals that
have been measured in the human auditory brainstem response
(Lee et al., 2009, see Fig. 2). In that study, the brainstem repre-
sentation of the musical intervals comprised not only stimulus
frequencies, but also numerous resonances at frequencies that
were not physically present in the stimulus. How did these fre-
quencies arise? The stimuli were the intervals major sixth (G and E,
“consonant”) and minor seventh (F# and E, “dissonant”) which
have fundamental frequency ratios of 1.6 (166 Hz/99 Hz) and 1.7
(166 Hz/93 Hz), making it unlikely that interaction of the funda-
mental frequencies created strong distortion products in the co-
chlea (Dhar et al., 2009, 2005; Knight and Kemp, 2001). Moreover,
the responses of trained musicians were significantly enhanced
compared with those of novice listeners, implying experience-
based differences that would not have arisen at the level of the
cochlea or auditory nerve (Lee et al., 2009). However, stimuli were
recorded from an electric piano and thus also included several
harmonics of the fundamentals which could have generated
cochlear distortions through their interaction. To guard against the
possibility of seeing cochlear responses in the FFR, Lee et al. (2009)
used the polarity reversal technique, averaging brainstem re-
sponses to stimuli with alternating polarities (Skoe and Kraus,
2010).

The polarity reversal technique is commonly taken to eliminate
the cochlear microphonic from the scalp-recorded potential (Skoe
and Kraus, 2010), and it is also said to eliminate the fine-
structure-following response and amplify the envelope-following
response in the scalp-recorded potential, irrespective of the
particular place of generation (Wile and Balaban, 2007). While
there is truth to both of these interpretations, it is most accurate to
say that the technique of averaging both polarity conditions

minimizes odd-order nonlinearities, and maximizes even-order
nonlinearities (Rickman et al., 1991, see also Appendix A). An un-
derstanding of this technique is critical for correctly interpreting
brainstem EEG results and attempting to model them. Odd-order
responses include those to the primaries themselves (first order)
and, for instance, a cubic difference tone, 2f1 � f2, arising from any
pair of primaries (third order). Even-order responses include the
simple difference tone, f2 � f1, and summation tone, f2 þ f1 (both
second order). Due to the nature of cochlear compression (Ruggero
et al., 1997; Robles and Ruggero, 2001) cochlear distortion products
are mostly odd-order (Jülicher et al., 2001; Szalai et al., 2013), thus
this technique minimizes most nonlinearities that would have
arisen via the cochlea.

We explore the implications of mode-locking using a nonlinear
cochlear model (e.g., Jülicher et al., 2001), coupled to a generic
model of mode-locking, which we take to represent cochlear nu-
cleus and inferior colliculus/lateral lemniscus (Fig. 1B). Mode-
locked dynamics can be observed in generic neuron models (Lee
and Kim, 2006), and in models of oscillatory neural populations
(Hoppensteadt and Izhikevich, 1996a; Large et al., 2010, see Fig. 1E).
Here, we employ a canonical model to make predictions about the
responses of neural populations, as observed in brainstem re-
cordings. The canonical model (Large et al., 2010) was derived from
a model of neural dynamics in oscillatory populations
(Hoppensteadt and Izhikevich, 1996a; Wilson and Cowan, 1973),
using normal form theory (Wiggins, 1990), and it makes generic
predictions that do not depend on the specific anatomical/physio-
logical mechanisms at the neuronal level that produce mode-
locked responses. This model predicts mode-locked population
responses to periodic stimuli, as illustrated in Fig. 1D, and is in
principle capable of explaining many kinds of nonlinearities that
have been reported in the central auditory system (Chertoff and
Hecox, 1990; Escabi and Schreiner, 2002; Joris et al., 2004;
Langner, 1992, 2007; Large and Crawford, 2002; Lee et al., 2009;
Pandya and Krishnan, 2004; Sutter and Schreiner, 1991; Kikuchi
et al., 2011). Here we ask whether mode-locking could explain
the specific nonlinear population responses to musical intervals
observed in human auditory brainstem (Lee et al., 2009).

2. Theoretical framework

In general, oscillatory neurodynamics arise through the inter-
action of excitatory and inhibitory subprocesses with implications

Fig. 2. Auditory stimuli and brainstem response. Auditory stimuli (red) and brainstem response (gray) observed by Lee et al. (2009) for (A) a consonant interval and (B) a dissonant
interval. The consonant interval was a major sixth, G2 (f1 ¼ 99 Hz) and E3(f2 ¼ 166 Hz); the dissonant interval was a minor seventh, F#2(f1 ¼ 93 Hz) and E3(f2 ¼ 166 Hz). The
brainstem response contains spectral information not present in the stimulus.
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for many different aspects of neural information processing
(Wilson and Cowan, 1973; Hoppensteadt and Izhikevich, 1996a;
Koepsell et al., 2010; Varela et al., 2001; Ainsworth et al., 2012).
The following generic model captures the dynamics of weakly
coupled networks of neural oscillators with different natural fre-
quencies responding to external stimulation (Hoppensteadt and
Izhikevich, 1996a; Large et al., 2010):

dxi
dt ¼ fiðxi; yi; lÞ þ εpiðx1; y1;.; xn; yn; sðtÞ; l; εÞ
dyi
dt ¼ giðxi; yi; lÞ þ εqiðx1; y1;.; xn; yn; sðtÞ; l; εÞ

(1)

In this general formulation, the variables xi and yi represent
excitatory and inhibitory activities in the ith neuronal population
(or neural oscillator) respectively. The nonlinear functions fi and gi
describe the intrinsic (uncoupled) dynamics of the excitatory and
inhibitory subpprocesses, and pi and qi describe interactions be-
tween neuronal subpopulations with external input s(t). l is a set of
model parameters, and ε is a small number that represents weak
interaction (Hoppensteadt and Izhikevich, 1996a).

To understand the implications of mode-locking for brainstem
responses, Eq. (1) is analyzed using normal form theory assuming
the system is near an oscillatory instability called a Hopf bifurcation
(Hoppensteadt and Izhikevich, 1996a; Large et al., 2010). This
analysis produces a canonical model, the simplest model in a
mathematical sense (see Hoppensteadt and Izhikevich, 1997;
Wiggins, 1990; Perko, 1996; Murdock, 2003) that captures the dy-
namics of the system. The analysis does not depend on the details
of Eq. (1), only on the existence of a Hopf bifurcation. The canonical
model makes important relationships explicit, including the rela-
tive strength of mode-locked responses. The canonical network
corresponding to Eq. (1) can be written as (Large et al., 2010):

si
dzi
dt

¼ zi
�
aþ i2pþ b1

���zi
���2 þ εb2

���zi
���4 þ/

�

þ c Pðε; sðtÞÞAðε; ziÞ (2)

where the roman i denotes the imaginary unit and zi is the
complex-valued state variable for the ith neural oscillator whose
real and imaginary parts can be thought of as the activation of the
excitatory and inhibitory subpopulations respectively. The param-
eter a controls the bifurcation of the system’s intrinsic behavior:
a ¼ 0 is the critical point, above which the system exhibits spon-
taneous oscillation and below which damped oscillation. The ith
oscillator’s natural frequency is given by fi ¼ 1/si, and si is varied to
create a tonotopic arrangement as is found in the cochlea and
brainstem (Langner, 1992). The b’s are nonlinear damping param-
eters, and the complete expansion of intrinsic terms describes a
fully saturating nonlinearity (Large et al., 2010; Murdock, 2003).

Coupling to the stimulus s(t) is nonlinear, and consists of a series
of terms called resonant monomials. Each resonant monomial ac-
counts for a different mode-locked response of the neural oscillator
to the stimulus (see Appendix A for a further mathematical
description of resonant monomials). The canonical model includes
a full expansion of resonant monomials which can be expressed as
a ‘passive’ nonlinear function Pðε; sðtÞÞ of the external stimulus, s(t),
multiplied by an ‘active’ nonlinear function Aðε; ziÞ of the current
state, zi. The full expansion of resonant monomials captures mode-
locked responses at stimulus frequencies as well as at the har-
monics, subharmonics, and any combination frequencies (see
Appendix A). Thus, the nonlinear coupling predicts the nature and
relative strength of mode-locked responses.

The ability to predict the full range of mode-locked responses to
a complex, multi-frequency stimulus allows us to use the canonical
model to extrapolate from observations of mode-locking in

individual auditory neurons (Arnold and Burkard, 1998, 2000;
Large et al., 1998; Laudanski et al., 2010) to the responses of
mode-locking auditory populations. This, in turn, enables predic-
tion of the responses that would be observed in the human audi-
tory brainstem. The parameter ε can be varied between 0 and 1 to
control the contribution of each monomial to the overall dynamics
of an oscillator. When ε is small only low order mode-locks are
observed, as ε is increased, higher order mode-locks begin to
appear. This provides a means to optimize model fits using a single
degree of freedom, yielding a strong constraint on the relative
amplitude of nonlinear resonances predicted for the brainstem
response to a complex input signal.

3. Methods

The stimuli from the Lee et al. (2009) study were used as input
to a cochlear model, which in turn provided input to two brainstem
network layers. The characteristic frequencies of the cochlear layer
and both brainstem layers spanned four octaves with 99 oscillators
per octave. Thus, each layer included 397 oscillators, with charac-
teristic frequencies ranging from 64 Hz to 1024 Hz, encompassing
the range of frequencies for which time-locked responses have
been observed in midbrain physiology (Langner, 1992). The
cochlear model includes a middle ear filter and simulates the
basilar membrane and the organ of Corti (cf. Jülicher et al., 2001, see
Appendix B). The cochlea is connected to the first brainstem layer,
representing the cochlear nucleus (CN), and the CN is connected to
the second brainstem layer, representing the inferior colliculus/
lateral lemniscus (IC/LL). The oscillator equations for the brainstem
layers utilize the complete canonical model, including the full
expansion of resonant monomials. In these layers, the parameters
were a ¼ 0, b1 ¼ 0, b 2¼ �1.

We modeled four FFRs from Lee et al., musicians’ and non-
musicians’ responses to both the consonant and dissonant in-
tervals. Lee et al. used stimuli with alternating polarity and
averaged the responses to these conditions, and our simulations
mimicked this situation. For each model fit, a simulation was run
for each polarity condition. The stimulus was fed to the cochlea, all
oscillator equations were numerically integrated for the length of
the stimulus, and the responses in all layers were stored. To
compute themodel brainstem FFR, the responses of all oscillators in
each layer were averaged, leaving a single time series for each layer
(see Fig. 3). There is evidence for the relative contributions of the
various generators of the brainstem FFR from lesion studies in cats
(Gardi et al., 1979), which indicates that the cochlear microphonic is
responsible for 25%, the cochlear nuclei 50%, and the lateral
lemniscus and inferior colliculus the remaining 25%. Following this
scheme, the model FFR was a weighted average of the cochlea, CN,
and IC/LL layers. This weighted average was filtered (3rd-order
digital Butterworth low-pass, 450 Hz cutoff) to account for the low-
pass effect of the skull, meninges, and scalp on the FFR. Finally, the
resultant model time series for each polarity condition were aver-
aged and fast Fourier transformed to produce a model fit. The four
model fits, for the consonant and dissonant intervals, and for
musician and nonmusician subjects, were optimized with a single
degree of freedom through a series of simulations. In these simu-
lations, the parameter ε was systematically varied between zero
and one to yield the highest correlation for each fit.

4. Results

Fig. 3 shows the predicted responses of nonmusicians to the
consonant interval at each model layer. For each layer, linear
amplitude spectra for a single polarity condition and for the average
of both polarity conditions are plotted. In addition to stimulus
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frequencies, oscillations at many other frequencies achieve
noticeable amplitude. It is important to note that the two-polarity
average zeros out all cochlear responses; there is only odd-order
activity, due to the nature of compression in the model cochlea.
Because our predicted response is an average of both polarity
conditions, it can only contain even-order nonlinearities. Odd-
order distortions in the cochlear model do propagate up to the
neural layers and there contribute to the formation of even-order
nonlinearities. However, the central point is that the only mecha-
nism for even-order nonlinearities in this model is mode-locking in
the neural layers due to the full expansion of resonant monomials.

Fig. 4 shows the predicted brainstem responses, based on the
two-polarity average. The canonical population response predicts
each peak in the nonmusician brainstem response with remarkable
accuracy for both intervals (consonant: R2 ¼ 0.77, p < 0.0001;
dissonant: R2 ¼ 0.67, p < 0.0001). Musicians’ responses did not
correlate as highly, but were also predicted with good accuracy
(consonant: R2 ¼ 0.74, p < 0.0001; dissonant: R2 ¼ 0.52,
p < 0.0001).

Best values of εwere greater for musicians (consonant: ε¼ 0.48;
dissonant: ε ¼ 0.41) than for nonmusicians (consonant: ε ¼ 0.28;
dissonant: ε ¼ 0.07). This suggests that the difference between
musician and nonmusician responses occurs partly because musi-
cians’ processing of musical intervals is more strongly nonlinear.
Stronger nonlinearities are observed in such systems as a result of
stronger gain, therefore this could point to overall synaptic efficacy.

This cannot be the entire explanation, however, because the model
also explained a smaller overall proportion of the variance due to
enhanced musician responses at certain frequencies. These more
subtle differences could not be accounted for by manipulation of ε
alone, implying that incorporation of other network properties into
the model, i.e., synaptic coupling, will be necessary to explain the
responses of trained listeners. This is consistent with the inter-
pretation that the refinement of auditory sensory encoding in
musicians is driven by synaptic plasticity that links learned repre-
sentations to the neural encoding of acoustic features (Lee et al.,
2009).

5. Discussion

Overall, the model explained 68% of the variance in human
brainstem data with a single degree of freedom fit, while holding
intrinsic and network parameters constant to evaluate the basic
approach. The remaining discrepancies could likely be accounted
for if these parameters were allowed to vary, modulating the
relative amplitude of response at different frequencies, as no doubt
would occur in the central auditory pathway. Therefore, the hy-
pothesis of active mode-locking neurodynamics in the central
auditory pathway appears sufficient to explain most of the
nonlinear responses observed in the human brainstem. Both the CN
and IC/LL layers contributed to the relative strengths of model
components, and from a signal processing point of view, processing
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Fig. 3. Mode-locking and population responses in a canonical model. Canonical neural oscillators can be organized into tonotopic networks and used to predict population re-
sponses. Shown are the predicted responses (linear amplitude spectra) of each layer for nonmusicians to the consonant stimulus. Both the averaged responses for both polarity
conditions (green) and the response for a single polarity condition (blue) are shown. Notice that averaging over both polarity conditions cancels out any contribution of the cochlea
to the model response.
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by multiple nonlinear transformations is not redundant; informa-
tion is added at every processing stage, and each stage would
contribute to perceptual processing in important, and possibly
unique ways.

While odd-order nonlinearities in the FFR are typically
attributed to the cochlea, the generation site of even-order non-
linearities is far less clear (Bhagat and Champlin, 2004). In our
model of the FFR, the absence of contribution of the cochlea and
the strictly even-order nature of the response are true by defi-
nition. However, it is easy to see how this could be the case in the
human auditory system as well: Every prominent frequency in all
responses can be generated by even-order interaction between

stimulus components (see Fig. 4). The response at 2f1 � f2, for
instance, is a typical example of a cubic distortion product;
however in this case the frequency 2f1 actually occurs in the
stimuli as the second harmonic of f1. Thus the component at
2f1 � f2 could be a simple difference tone. If one compares all the
nonlinearities in the response to the frequencies in the stimuli,
the potential quadratic nature of all response frequencies is clear.
As the generation of even-order nonlinearities in scalp-recorded
potentials is much more likely neural, possibly as a result of
envelope-following, than that of odd-order nonlinearities, the
similarity of our model FFR to the actual FFR is perhaps further
explained.

Fig. 4. Model & data comparison. Comparisons of model predictions and auditory brainstem responses of nonmusicians to (A) the consonant interval (99 Hz, 166 Hz) and (B) the
dissonant interval (93 Hz, 166 Hz), and of musicians to (C) the consonant interval and (D) the dissonant interval. The labels above each spectral component refer only to their specific
frequencies as functions of the primaries, and do not necessarily reflect the generating processes of those components (see Discussion).

K.D. Lerud et al. / Hearing Research 308 (2014) 41e4946
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Dichotic stimulation is commonly held to be a good potential
indicator of the neural generation of nonlinear resonances. Yet
there is little evidence of any nonlinearity in scalp-recorded po-
tentials under dichotic stimulation (Bidelman and Krishnan, 2009;
Gockel et al., 2011). It is important to note, however, that dichotic
stimulation prevents the interaction of stimulus components in the
cochlear nuclei, sites of activity at which mode-locking has been
directly observed (Laudanski et al., 2010). Thus, the lack of scalp-
recorded nonlinear resonances under dichotic stimulation does
not constitute strong counter-evidence for this model, or for the
claim that the nonlinear resonances observed by Lee et al. (2009)
were primarily generated neurally.

Traditional models of central auditory processing rely upon
synaptic delays to enable temporal computations (e.g., autocorre-
lation), thought to be necessary for auditory processes such as pitch
perception (Licklider, 1951). However, the stark lack of evidence for
neural delays over the time-scale required for pitch perception
presents a significant puzzle for this theoretical approach (de
Cheveigné and Pressnitzer, 2006). Moreover, key results in pitch
perception, including the pitch of sinusoidally amplitude-
modulated noise (Burns and Viemeister, 1976, 1981), Stevens’ rule
(e.g., Hartmann, 1996), and the lack of pitch in certain sounds
containing autocorrelation peaks (Kaernbach and Demany, 1998),
cannot be explained by delay-based models. These problems in
pitch perception, as well as more traditional ones such as the pitch
of the missing fundamental and pitch shift of the residue (Schouten
et al., 1962), could be explained as higher-order resonance in
nonlinear oscillators (e.g., Cartwright et al., 1999).

Oscillatory neurodynamics could also explain key aspects of
music perception and cognition. Recent empirical studies have
shown that harmonicity (integer ratio frequency relationships)
provides a better explanation for consonance and dissonance than
does beating (McDermott et al., 2010; Cousineau et al., 2012). Thus,
the explanation for consonance may lie in low-order integer fre-
quency ratios, which is a fundamental principle of stability in
oscillatory dynamical systems (Shapira Lots and Stone, 2008). It has
also been shown that the relative strength of mode-locked neural
responses could account for tonal stability, predicting a higher
proportion of variance in listener judgments of tonal stability in
Western major and minor modes than psychoacoustic measure-
ments of sensory consonance (Large, 2011a; Krumhansl and
Kessler, 1982; Krumhansl, 1990). Tonal stability and attraction are
important because these are the properties that are thought to
differentiate musical sound sequences from arbitrary sound se-
quences, and enable non-referential sound patterns to carry
meaning (Zuckerkandl, 1956). Moreover, neurodynamic predictions
matched the perception of tonal stability in North Indian raga by
familiar Indian listeners, as well as by unfamiliar Western listeners
(Large et al., submitted; Castellano et al., 1984). Thus, the theoret-
ical stability of mode-locking interactions in oscillatory neural
populations predicts empirically measured stability cross-
culturally, consistent with a neurodynamic explanation.

6. Limitations and future work

A single parameter of a model brainstem network was manip-
ulated to fit Lee et al.’s (2009) brainstem FFR data. The parsimony of
the model, its basis in neurophysiological observations of mode-
locking, and the quality of the fits all speak to the potential of
this theoretical approach. It is clear that no model can provide
direct evidence for the physiological generators of auditory non-
linearities. However, to the extent that suchmodeling efforts clarify
the nature of nonlinear resonance in the auditory system, pre-
dictions and implications for empirical research may ultimately
lead to a fuller understanding of the mechanisms generating the

FFR. If successful, dynamical systems theory applied to nonlinear
auditory signal processing may have further application in under-
standing other dynamic aspects of neural processing.

Our simplified cochlear model only generates odd-order non-
linearities, however even-order nonlinearities, mainly the simple
difference tone (DT), have also been observed in mammalian
cochleae. A more accurate cochlear model that performed this way
would no doubt be more biologically plausible, and would likely
alter the modeled brainstem response, if only slightly. It is impor-
tant to note, however, that many studies show substantial differ-
ences in the behavior of the difference tone and the odd-order cubic
difference tone (CDT) under two-tone stimulation (Cooper and
Rhode, 1997; Bian and Chen, 2008). These differences are evident,
for instance, in their sensitivities to f2/f1 ratio, absolute frequencies
of stimulation, ratio of primary levels, and absolute primary levels.
While the CDT, along with the rest of the odd-order nonlinearities
commonly seen in both real and model cochleae, can be fully
explained through compressive nonlinearity, the explanation of the
DT is far less clear. These facts together suggest different generating
mechanisms for the components (Hall, 1974; Kujawa et al., 1995;
Chang and Norton, 1997), and it cannot be ruled out that the DT
is partially generated neurally in the brainstem and is propagated
back to the basilar membrane via the efferent olivocochlear system.
Whether or not this is the case, it is well known that this efferent
connectivity is ubiquitous and important in the auditory system;
thus the addition of efferent connectivity to this model is in order.

In general, improvements will be necessary to enable more
comprehensive simulations of the early auditory system that
include all relevant aspects of cochlear dynamics, as well as
parameterization of CN and IC/LL dynamics (Large and Almonte,
2012). In comprehensive models, parameter fitting will become a
significant issue. Finally, it will be necessary to explore models of
synaptic plasticity for neural oscillator networks (e.g.,
Hoppensteadt and Izhikevich, 1996b; Large, 2011b) in order to
better explain the responses of trained listeners.

7. Conclusions

Neural models explain the perception of sound patterns as the
interaction of sound stimuli with neurophysiological processes.
Canonical models use the tools of nonlinear dynamical systems to
make predictions about perception that are consistent with our
understanding of the neurophysiology (e.g., mode-locking), but are
not overly dependent on the neuronal-level details. This approach
may lead to an understanding of general neural signal processing
principles underlying music and pitch perception. Moreover, ca-
nonical analysis of plasticity in neural oscillator networks may help
us to understand the role of learning in modulating these re-
sponses. Thus, future modeling efforts based on canonical
dynamical systems could bring us closer to understanding funda-
mental mechanisms of hearing, communication, and auditory
system development.
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Appendix A. Resonant monomials in the canonical model

The derivation of resonant monomials makes use of Poincaré-
Dulac normal form theory (Hoppensteadt and Izhikevich, 1997;

K.D. Lerud et al. / Hearing Research 308 (2014) 41e49 47



Author's personal copy

Murdock, 2003; Wiggins, 1990), and yields resonant monomials of
the form

ε

��P
j
pjþqj

�
þri�2

��
2xp1

1 /xpn
n xq11 /xqnn zri�1

i (A.1)

where each monomial leads to a specific resonance in the network.
Here, x1,.,xn and x1;.; xn represent the individual frequency
components of the input signal and their complex conjugates, and
p1,.,pn, q1,.,qn, and ri are natural numbers where at least one of
them is not zero. This analysis predicts responses at harmonics (e.g.,
the monomial

ffiffiffi
ε

p
x21 implies a resonant frequency equal to 2f1),

subharmonics (e.g.,
ffiffiffi
ε

p
x1zi corresponds to f1/2), integer ratios (e.g.,

ε

ffiffiffi
ε

p
x31zi corresponds to 3f1/2), combination frequencies (e.g., εx21x2

corresponds to 2f1�f2) and so forth. The ε-based coefficient predicts
the relative strength of the nonlinear resonances.

The canonical model includes a full expansion of resonant mo-
nomials, one for every combination of input frequencies that could
lead to a mode-locked resonance, so that each oscillator responds
appropriately to a complex stimulus that contains multiple fre-
quency components (Large et al., 2010). The analysis leads to one
form of full expansion that includes all possible resonant mono-
mials of the form shown in (A.1). This infinite sum of resonant
monomials can be factored into a passive nonlinear function
Pðε; sðtÞÞ and an active nonlinear function Aðε; ziÞ:

Pðε; sðtÞÞ ¼ �
sþ ffiffiffi
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s2 þ εs3 þ/
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p
zi þ εz2i þ/ ¼ 1

1� ffiffiffi
ε

p
zi
; (A.2)

where s(t) ¼ x1þ.þxn is the input signal.
The stimulus polarity reversal technique is commonly used to

separate out different types of nonlinear responses. The summation
of responses obtained using alternating stimulus polarity contains
only even-order nonlinearities whereas the subtraction of re-
sponses to different polarities contains only odd-order non-
linearities. This relationship between stimulus polarity and
nonlinear response can be explained succinctly in the context of the
canonical model presented in this paper.

Let us consider, for instance, a stimulus including two frequency
components, s(t) ¼ x1(t) þ x2(t). Reversing the polarity of the
stimulus (i.e., using �s(t) instead of s(t) as stimulus) reverses the
polarity of the third-order passive nonlinearity x21x2 (corresponding
to the cubic difference tone 2f1 � f2) since ð�x1Þ2ð�x2Þ ¼ �x21x2.
On the other hand, the second-order x2x1 (the quadratic difference
tone f2 � f1) does not change polarity under stimulus polarity
reversal since ð�x2Þð�x1Þ ¼ x2x1. To generalize, odd-order
nonlinear responses change polarity under stimulus polarity
reversal whereas even-order ones do not. Thus, adding responses to
alternating stimulus polarity leads to doubling even-order
nonlinear components while eliminating odd-order ones. Sub-
tracting the two responses, on the other hand, doubles odd-order
nonlinearities and eliminates even-order ones.

Appendix B. Cochlear model

The cochlear model is motivated by recent nonlinear models of
the cochlea (Jülicher et al., 2001; Szalai et al., 2013). The auditory
stimulus provided to the cochlear model was Hilbert transformed
and pre-filtered using the human middle-ear filter (MEF) model of
Zilany and Bruce (2006) (see also Bruce et al., 2003). The resulting
complex waveform, denoted by x(t), was provided as input to the

cochlear network. We modeled cochlear dynamics using a tono-
topically organized network of Hopf oscillators, each tuned to a
distinct natural frequency. The coupled system given by Eq. (B.1)
represents a cochlear section which encompasses the action of
basilar membrane (BM) in conjunction with the dynamics of the
outer hair cells and related organ of Corti (OC) components. The
first equation below accounts for passive BM dynamics, similar to
linear pre-filtering (Jülicher et al., 2001), and is formally related to a
gammatone filter (Lyon et al., 2010). The second equation accounts
for nonlinear OC dynamics. Nonlinearities in the cochlear response
are generated due to amplitude compression and controlled by the
b parameters.

s dzbm
dt ¼ zbmðabm þ i2pÞ þ xðtÞ

s dzoc
dt ¼ zoc

�
aoc þ i2pþ b1

���zoc
���2 þ εb2

���zoc
���4 þ/

�
þ zbm

(B.1)

The time dependent variables zbm(t) and zoc(t) (which, for
notational simplicity, are written as zbm and zoc) are complex-
valued state variables representing the response of the BM and
OC respectively. Each oscillator’s natural frequency is f¼ 1/sHz, and
abm < 0, aoc ¼ 0 are linear damping and bifurcation parameters,
respectively, and x(t) denotes linear forcing by a time-varying
external signal. The only mechanism for generation of nonlinear
distortion in this model is compression. Thus, all distortions pro-
duced by the cochlear model are odd-order (Jülicher et al., 2001;
Stoop et al., 2005).

This kind of cochlear model can account for a nontrivial subset
of cochlear dynamics such as sharp mechanical frequency tuning,
exquisite sensitivity, and a large dynamic range (Eguíluz et al.,
2000; Magnasco, 2003; Mora and Bialek, 2011; Ospeck et al.,
2001). To tune the model’s parameters, macaque monkey tuning
curve data (Joris et al., 2011) was used to determine reasonable
values. For the simulations, the parameter values abm¼�.1, aoc ¼ 0,
b1 ¼ �10,000, b2 ¼ �1, ε ¼ .0025 were used to define the cochlear
network spanning a frequency range within the bounds of the
human cochlea. The natural frequencies of the oscillators were
spaced logarithmically with a center frequency CF of 256 Hz, 99
oscillatory complexes as defined by Eq. (B.1) per octave, and 2 oc-
taves on each side of CF.
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