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SCIENCE SINCE ANTIQUITY HAS ASKED WHETHER

mathematical relationships among acoustic frequencies
govern musical relationships. Psychophysics rejected
frequency ratio theories, focusing on sensory phenom-
ena predicted by linear analysis of sound. Cognitive
psychologists have since focused on long-term exposure
to the music of one’s culture and short-term sensitivity
to statistical regularities. Today evidence is rapidly
mounting that oscillatory neurodynamics is an impor-
tant source of nonlinear auditory responses. This leads
us to reevaluate the significance of frequency relation-
ships in the perception of music. Here, we present
a dynamical systems analysis of mode-locked neural
oscillation that predicts cross-cultural invariances in
music perception and cognition. We show that this the-
oretical framework combines with short- and long-term
learning to explain the perception of Hindustani rāgas,
not only by encultured Indian listeners but also by
Western listeners unfamiliar with the style. These find-
ings demonstrate that intrinsic neurodynamics contrib-
ute significantly to the perception of musical structure.
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I S MUSICAL KNOWLEDGE MAINLY ACQUIRED

through long-term exposure to the music of one’s
culture? Or do intrinsic properties of neural proces-

sing constrain music perception and cognition? What is
the role of short-term exposure and rapid statistical
learning? While all these likely play a role, it is unknown
how these fundamental mechanisms combine to enable
the rich cognitive and emotional experience of music.

Here we use dynamical systems theory to transform
recent findings about nonlinear auditory neural proces-
sing into predictions about the perception of musical
relationships. We ask whether this theory can explain
cross-cultural invariances in the perception of Hindu-
stani classical music, a highly developed style different
from the more well-studied Western tonal-harmonic
music. The dynamical principles explain fundamental
similarities between unfamiliar Western listeners and
encultured Indian listeners. These combine with statis-
tical learning and culture-specific knowledge to provide
a new model of tonal organization.

Consonance and dissonance are fundamental con-
cepts in the science of music, with a long history of
theory and experiment. The earliest observation, dating
back at least to Pythagoras, is that small integer ratios,
such as 2:1, 3:2, and 4:3, produce more pleasing or
consonant musical intervals of the octave, fifth, and
fourth—the ‘‘perfect consonances’’—because they are
mathematically pure (Burns, 1999). Pythagoras
designed a system for tuning musical instruments based
on the perfect consonances (Table 1), and 500 years
later Ptolemy proposed several small-integer-ratio tun-
ing systems, known as just intonation (JI; Table 1), still
current in musical practice. Three significant non-
Western musical traditions—Indian, Chinese, and
Arab-Persian—also use intervals that approximate
small integer ratios (Burns, 1999). In the eighteenth
century, Euler (1739) hypothesized that the mind
directly perceives and aesthetically appreciates simple
integer frequency ratios.

Helmholtz (1885/1954) observed that purity of math-
ematical ratios could not explain perceived consonance
in equal tempered tuning systems (ET; Table 1), in
which small integer ratios are approximated by irratio-
nal numbers. Instead, he proposed that as the auditory
system performs a linear analysis of complex sounds,
proximal harmonics interfere with one another and
produce a sensation of roughness, which he equated
with dissonance. Small integer ratios yield more conso-
nant musical intervals, he surmised, because they have
more harmonics in common and thus fewer harmonics
that interfere. When extrapolated to complex tones, the
interaction of pure tone components predicts the per-
ception of consonance well (Kameoka & Kuriyagawa,
1969).
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Recently, there has been a renewed interest in the
neurophysiological basis of consonance. Theories based
on the neural processing of pitch relationships have led
to the development of concepts such as harmonicity and
dynamical stability. Harmonicity is the degree to which
the frequency spectrum of two complex tones resembles
the harmonic spectrum of the difference tone of the
fundamental frequencies (Gill & Purves, 2009; Tramo,
Cariani, Delgutte, & Braida, 2001). Dynamical stability
is based on the synchronization properties of ensembles
of coupled neural oscillators (Shapira Lots & Stone,
2008), which we describe in further detail below. Inter-
estingly, both theories relate consonance and dissonance
to simple integer frequency ratios. Integer ratio-based
predictions have been shown to account for generaliza-
tions about musical scales cross-culturally (Gill &
Purves, 2009) and to account for the standard ordering
of consonances as described in Western music theory
(Shapira Lots & Stone, 2008). Perceptual studies have
shown that harmonicity has a greater effect on conso-
nance judgments in individuals with music training
(McDermott, Lehr, & Oxenham, 2010), little effect in indi-
viduals with congenital amusia (Cousineau, McDermott,
& Peretz, 2012), and can be dissociated from roughness
(Cousineau et al., 2012; McDermott et al., 2010).

Recent theory and perceptual experiments have
focused on the phenomenon of musical tension and
resolution, which is distinct from the phenomenon of
consonance and dissonance. The experience of tension
and resolution, central to both Western and non-
Western tonal music, is the outcome of expectations
generated in a musical context. In a tonal melody, for
example, certain pitches are felt as more stable than
others, providing a sense of completion, that expecta-
tions have been fulfilled. More stable pitches function as
points of organizational focus and engender a sense of

resolution. Less stable pitches are felt as points of ten-
sion; they function relative to the more stable ones and
are heard to point toward or be attracted to them (Bhar-
ucha, 1984; Lerdahl, 2001). Stability and attraction are
the properties that differentiate musical sound
sequences from arbitrary sound sequences and are
thought to enable simple sound patterns to carry mean-
ing (Meyer, 1956; Zuckerkandl, 1956).

Empirical studies measure perceived stability and ask
how it depends on the musical context. One method
that has been used to index tonal stability is the
probe-tone method. In probe-tone experiments (e.g.,
Krumhansl & Kessler, 1982; Krumhansl & Shepard,
1979), listeners rate how well each tone within an octave
fits with or completes a tonal context presented before
it, which might be a scale, a sequence of chords, or
a musical passage. Consistent patterns of ratings, called
tone profiles, have been found for a variety of contexts
including Western keys, Indian rāgas, Balinese melo-
dies, 20th century music, and sequences specially con-
structed to have novel tone distributions (for a review,
see Krumhansl & Cuddy, 2010). In Western major and
minor contexts the tonic is the most stable, followed by
the fifth and third scale degrees, then the remaining
diatonic scale degrees, and finally the nondiatonic
pitches (Krumhansl, 1990; see also Figure 1A).

Stability judgments differ from consonance judg-
ments in a number of ways. Consonance correlates only
weakly with stability ratings in major mode contexts
and does not account well for minor contexts (Krum-
hansl, 1990). It does not explain why a chord may sound
consonant or dissonant depending on its place in
a musical sequence (Johnson-Laird, Kang, & Leong,
2012), and it makes a relatively small contribution to
the sense of tension and release experienced when lis-
tening to music (Lerdahl, 2001). Moreover, consonance

TABLE 1. Frequency Ratios Used in Tuning Systems and Farey Ratios Chosen by the Neurodynamic Model

Interval from C to Pythagorean tuning Just intonation Equal temperament Farey ratio

C 1:1 (1.000) 1:1 (1.000) 20 (1.000) 1:1 (1.000)
C�/D� 28:35 (1.053) 16:15 (1.067) 21/12 (1.059) 16:15 (1.067)
D 32:23 (1.125) 9:8 (1.125) 22/12 (1.122) 9:8 (1.125)
D�/E� 25:33 (1.185) 6:5 (1.200) 23/12 (1.189) 6:5 (1.200)
E 34:26 (1.266) 5:4 (1.250) 24/12 (1.260) 5:4 (1.250)
F 22:3 (1.333) 4:3 (1.333) 25/12 (1.335) 4:3 (1.333)
F�/G� 36:29 (1.424) 45:32 (1.406) 26/12 (1.414) 17:12 (1.417)
G 3:2 (1.500) 3:2 (1.500) 27/12 (1.498) 3:2 (1.500)
G�/A� 27:34 (1.580) 8:5 (1.600) 28/12 (1.587) 8:5 (1.600)
A 33:24 (1.688) 5:3 (1.667) 29/12 (1.682) 5:3 (1.667)
A�/B� 24:32 (1.778) 7:4 (1.750) 210/12 (1.782) 16:9 (1.778)
B 35:27 (1.898) 15:8 (1.875) 211/12 (1.888) 15:8 (1.875)
C (octave) 2:1 (2.000) 2:1 (2.000) 21 (2.000) 2:1 (2.000)
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relationships are fixed, implying that musical relation-
ships that depend upon them would be largely invariant
historically and cross-culturally.

To ask what aspects of tonal stability may be invariant
across cultures, we turn to Hindustani music. The Hin-
dustani tonal system shares some properties with West-
ern music but differs in important respects. Its basic set
of tones contains intervals that approximate the same
integer-ratio intervals used in Western music. Many of
the scales (thāts) are heptatonic, containing seven tones,
but this may vary depending on the particular rāga.
Whereas Western music is anchored in harmony, Hin-
dustani music is anchored to a drone, consisting of the
tonic (Sa) and usually the fifth (Pa). These two tones
are fixed in all the scales, but the remaining tones can

appear in one of two positions differing by a semitone,
creating a richer and more diverse scale system than is
used in the West. As a consequence, the intervals
between adjacent pitches in the Indian scale system are
more varied than in the major and minor scales of
Western music. Systematic relationships between a sub-
set of Hindustani scales can be displayed in a circular
representation, similar to the layout of keys on the
Western circle of fifths (Figure 2; see Jairazbhoy, 1971,
for a theoretical account of the circle of thāts). However,
comparison shows that although some of the Hindu-
stani scales use the same tones as a Western key, all
Hindustani scales shown are different modes with the
same tonic (C or Sa) whereas all the Western keys are
the same mode with different tonics.

Given such differences, one might assume that per-
ceived stability relationships are quite different in Hin-
dustani and Western music, and that large differences
would be found between Indian listeners and Western
listeners because of long-term cultural experience.
Interestingly, this prediction has turned out to be

FIGURE 1. Tonal stability and mode-locking dynamics. (A) A tone profile

(Krumhansl & Kessler, 1982) summarizing the stability of tones in the

Western major mode (circles). Predictions of stability (Equation 2) for

the major mode (Large, 2010) based on an analysis of mode-locking

neurodynamics (dots). The value of � for the maximum correlation is

shown along with the r 2 statistic. (B) Mode-locked oscillations at

different integer ratios. The real parts of z1 and z2 (Equation 1) are

plotted over time. Each inset shows the interaction between an

oscillator tuned to the frequency of C (z1, dashed line) and an

oscillator tuned to the frequency of the pitch labeled in the panel A

(z2, solid line). (C) Resonance regions for the mode-locks governing

equal-tempered intervals. The horizontal axis represents the natural

frequency ratio of two neural oscillators, with the labels indicating the

natural frequency of the second oscillator while the first oscillator is

fixed at the reference pitch C. The integer ratios chosen for the

chromatic intervals, called Farey ratios, are shown in Table 1 (see

Method for the procedure of choosing the ratios).

FIGURE 2. Western and Hindustani scale systems. The circle of fifths

(top) and the circle of thāts (bottom) are shown with the scale tones

listed in parentheses, starting with the reference pitch (tonic for the

Western system and Sa for the Hindustani system).
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incorrect. In one experiment (Castellano, Bharucha, &
Krumhansl, 1984), the probe-tone method was used to
quantify perceived stability relationships in Hindustani
music for two groups of listeners: Indian listeners, who
were familiar with Hindustani music, and unfamiliar
Western listeners. The Indian and Western listeners
were matched in music training (which was at a moder-
ate level) so that any differences found could be attrib-
uted to cultural experience. Surprisingly, the ratings of
Western listeners correlated strongly with those of
Indian listeners, both matching the predictions of Hin-
dustani music theory. Thus, the experience of stability
did not require long-term exposure to the music of
a particular culture; even the relatively short melodies
used in this experiment reliably convey stability infor-
mation to unfamiliar listeners.

One possible account of this surprising result came
from examining the musical contexts. It revealed that
the relative durations of tones correlated with the sta-
bility ratings of both groups of listeners. This suggested
that perhaps the Western listeners abstracted stability
based on the relative durations of the tones in the short
melodic contexts. Music training may have enhanced
the ability to extrapolate to an unfamiliar style (Krum-
hansl & Cuddy, 2010; Oram & Cuddy, 1995), so larger
differences might have been found with Western non-
musicians who are less adept at assimilating unfamiliar
tone distributions. However, the primary interest here
was the effect of exposure to the style not music training
per se. Related work found that the distribution of
pitches in Western tonal music, their relative frequen-
cies of occurrence and durations, resembles Western
tone stability profiles (Krumhansl, 1985). It has since
been shown that manipulating statistical regularities
over both the short and longer term can affect stability
ratings (Loui, Wessel, & Kam, 2010; Oram & Cuddy,
1995). These findings provided evidence that what is
now called statistical learning applies not only to lan-
guage and other domains (Kirkham, Slemmer, & John-
son, 2002; Saffran, 2003), but also to music.

The difficulty with an explanation of tonal stability
based solely on the relative duration of tones is that it
implies that any given duration distribution could estab-
lish a hierarchy of stability equally well regardless of
pitch set. This raises some perplexing questions. If any
set of pitches would do equally well, why are small
integer ratio tuning systems so pervasive (Burns,
1999)? Why is it that, despite the fact that the statistical
distributions differ across musical cultures and styles,
regularities are also apparent such that consonant inter-
vals are favored (Krumhansl, 2000; Krumhansl, Louhi-
vuori, Toiviainen, Järvinen, & Eerola, 1999; Krumhansl

et al., 2000)? What accounts for the effects of frequency
ratio, harmony, and pitch set on stability relationships
(Krumhansl & Cuddy, 2010; Loui et al., 2010; Oram &
Cuddy, 1995; Schellenberg & Trehub, 1996)? Might the
relative duration statistics found in music reflect some
underlying effect of acoustic frequency relationships?
What is needed is a model that can take into account
both frequency ratio and relative duration effects, as
well as possible influences of culture-specific knowl-
edge. Here we propose a new model consistent with
evidence of nonlinear auditory processing, which pre-
dicts that dynamical stability in an oscillatory neural
network contributes strongly to the perception of tonal
stability.

Nonlinearities in Auditory Processing

Helmholtz’s (1885/1954) observations, and most subse-
quent treatments of frequency ratios and their role in
determining perceived musical relationships, have
rested heavily on the assumption that the auditory sys-
tem performs a linear frequency decomposition of
incoming acoustic signals. In linear systems, small inte-
ger ratios have no special properties per se; therefore the
only principle available to explain consonance is that of
interference. However, we now know that the auditory
nervous system is highly nonlinear, and in nonlinear
systems frequency ratio relationships are important
determinants of system behavior (Hoppensteadt & Izhi-
kevich, 1997).

Recent evidence about nonlinearities in auditory pro-
cessing may lead to a better understanding of how fre-
quency ratios constrain the perception of musical
relationships. Nonlinear responses to sound are found
in the active processes of the cochlea (Robles, Ruggero,
& Rich, 1997), and in neural populations of the cochlear
nucleus, inferior colliculus, and higher auditory areas
(Escabi & Schreiner, 2002; Langner, 2007; Sutter &
Schreiner, 1991). Nonlinear spectrotemporal receptive
fields (STRFs) have been identified in the inferior colli-
culus of the cat (Escabi & Schreiner, 2002) and the gerbil
(Langner, 2007), and in cat primary auditory cortex
(Sutter & Schreiner, 1991). In humans, nonlinear
frequency-following responses (FFRs) have been
observed in the brainstem using electroencephalogra-
phy (EEG; Pandya & Krishnan, 2004), and in the
auditory cortex using steady-state methods in magne-
toencephalography (MEG; Purcell, Ross, Picton, &
Pantev, 2007). Highly patterned nonlinear responses
to harmonic musical intervals have been measured in
the human auditory brainstem response (Lee, Skoe,
Kraus, & Ashley, 2009) and have been captured in
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a nonlinear model of central auditory processing (Large
& Almonte, 2012; Lerud, Almonte, Kim, & Large, 2014).

In central auditory circuits, action potentials phase-
lock to both the fine time structure and the temporal
envelope modulations of auditory stimuli at many dif-
ferent levels, including cochlear nucleus, superior olive,
inferior colliculus, thalamus, and the A1 cortical region
(Langner, 1992). If phase-locked activity arises from
active nonlinear circuits, one might also expect to observe
mode-locking, a generalization of phase-locking, in
which a periodic stimulus interacts with the intrinsic
dynamics of a nonlinear oscillator, causing k cycles of
the oscillator to lock to m cycles of the stimulus (where
k and m are integers; see Figure 1B). Recently, mode-
locking to acoustic signals has been reported in guinea
pig cochlear nucleus chopper and onset neurons
(Laudanski, Coombes, Palmer, & Sumner, 2010). Mode-
locked spiking patterns are often observed in vitro under
DC injection (Brumberg & Gutkin, 2007), and mode-
locked dynamics can be observed in generic models
of neurons (Lee & Kim, 2006), neural populations
(Hoppensteadt & Izhikevich, 1996; Large, Almonte, &
Velasco, 2010), and auditory brainstem neurodynamics
(Lerud et al., 2014).

Neurodynamic Model

We introduce a dynamical systems analysis that trans-
lates observations of mode-locking auditory dynamics
into hypotheses about the perception of musical rela-
tionships. The conceptual framework for tonal stability
is as follows. Each tone in a sequence creates a memory
trace in an oscillatory network at or near its funda-
mental frequency. The neuronal oscillations interact
with one another, creating complex patterns of
mode-locking. In such a network certain frequencies
would have greater dynamical stability, and we test
whether this dynamical stability predicts perceived
tonal stability.

When two oscillatory neural populations with natural
frequencies, f1 and f2, are coupled, their long-term
dynamics are governed by a resonant relationship. If
the ratio f1:f2 is close enough to an integer ratio k:m,
they mode-lock to one another with k cycles of one
locking to m cycles of the other (Figure 1B). Mode-
locking occurs in regions of parameter space called
Arnol’d tongues (Figure 1C; see also Glass, 2001), whose
boundaries are determined by stable (attracting) steady-
state solutions of Equation 1, below. Two neuronal oscil-
lators whose intrinsic frequencies fall within a resonance
region mode-lock by adopting instantaneous frequen-
cies different from their intrinsic frequencies (Video

S11). Figure 1C shows that resonance regions based
on simpler mode-locks (e.g., 3:2) are wider than those
based on higher-order ratios (e.g., 15:8), indicating that
mode-locking responses driven by small integer ratios
have greater dynamical stability.

Predictions about stability are derived from a dynam-
ical systems analysis of weakly interacting oscillatory
neural populations with different natural frequencies.
The generic dynamics of such a system is captured by

�1
dz1

dt
¼ z1ðaþ i2�þ �1jz1j2 þ ��2jz1j4 þ � � �Þ

þc�ðkþm�2Þ=2zk
2�zm�1

1 ;

�2
dz2

dt
¼ z2ðaþ i2�þ �1jz2j2 þ ��2jz2j4 þ � � �Þ

þc�ðkþm�2Þ=2zm
1 �zk�1

2 ;

ð1Þ

which describes the results of an analysis of two oscilla-
tory populations (i ¼ 1, 2) whose frequencies, f1 ¼ 1/�1

and f2¼ 1/�2, are close enough to the integer ratio k:m so
that they mode-lock in that ratio (for details, see Hop-
pensteadt & Izhikevich, 1997; Large et al., 2010). Here, z1

and z2 are complex-valued (two-dimensional) state vari-
ables that represent the amplitude and phase of oscilla-
tions. The parameter a controls the bifurcation of
autonomous behavior (spontaneous oscillation when
a > 0, damped oscillation when a < 0), the �n parameters
specify nonlinear intrinsic dynamics, c represents synap-
tic coupling strength between neural oscillators, � is
a small number indicating weak interaction, �z is the
complex conjugate of z, and the roman i denotes the
imaginary unit.

Predictions of Tonal Stability

Predicting tonal stability requires finding stable steady-
state solutions of systems of equations such as Equation
1, where the � parameters are chosen based on the
frequencies of the scale (i.e., � i ¼ 1/fi). To find the best

1 Video S1 can be found in the supplementary materials section at the
online version of this paper. The video shows that out of an infinite
number of natural resonances within an octave (i.e., between 1:1 and
2:1), the neurodynamic model chooses the strongest resonance that is
close enough to each equal-tempered (ET) ratio. For each ET ratio from
the unison to the octave, a pure-tone dyad tuned to the ratio is played, two
ET-tuned oscillators are set into motion, mode-locking in the chosen
integer ratio (governed by Equation 1; the bottom panel shows the real
part of oscillations), and the resonance region (Arnol’d tongue) for the
mode-locking oscillators is displayed (top panel). For human eyes, oscil-
lations are slowed down so that the lower C becomes 1 Hz.
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fitting model using this approach, however, we would
need to specify all parameters, namely the a, �n, and the
c, for all oscillators in the system, resulting in excessive
degrees of freedom, and necessitating search of a prohib-
itively large parameter space. Here we present a simpler
approach that leads to closed-form predictions with a sin-
gle degree of freedom. This approach assumes a simpli-
fied network in which each oscillator interacts with only
one other oscillator, whose frequency is that of the tonic.
Such a network can be specified as pairs of equations like
Equation 1. Steady-state amplitude for each oscillator in
Equation 1 depends on the strength of its input, for
instance, c �ðkþm�2Þ=2zk

2�zm�1
1 . The strength is propor-

tional to �ðkþm�2Þ=2, therefore we use this simple formula
to approximate stability within a given context.

First, k and m must be determined based on the fre-
quencies of the scale being tested. As Figure 1C shows,
there are regions of stability not just at integer ratios,
but around integer ratios. We choose the smallest k and
m (i.e., the largest resonance region) for which k/m
approximates the actual frequency ratio closely enough
(Table 1; see Method). This approach does not require
mathematical purity of ratios to predict perceptual
effects, it could be applied to any set of frequency ratios.
Next, steady-state amplitude can be estimated by spec-
ifying a single parameter, �. Assuming � < 1 (weak
interaction), input strength is highest when k þ m is
smallest, so mode-locking responses driven by small
integer ratios produce higher amplitude responses.
Finally, the input to zi depends on zi itself. This means
that, when k, m > 1, an oscillator cannot achieve non-
zero amplitude merely by interaction with another
oscillator; it requires external input at its own frequency.
Thus, only tones in the context sequence enter into the
interaction. In sum, we use �ðkþm�2Þ=2 to predict the
relative stability of different mode-locked states where
the k’s and m’s are determined based on the frequency
ratios of the tones that occur in the scale (see Method),
and any tones not sounded in the context sequence are
assigned a stability value of 0.

For a complex network of interacting frequencies,
computer simulations can be used to numerically inte-
grate the nonlinear differential equations, one for each
frequency, producing more detailed predictions. The
Appendix contains equations of a complete computer
model, and Videos S2 and S3 show animations of oscil-
lator amplitude as a function of time, which predicts
stability for specific musical sequences.2

Two lines of recent research have considered whether
dynamical stability could explain aspects of music per-
ception and cognition. One analysis showed that the
width of resonance regions in a model of coupled neural
oscillators predicts the standard ordering of conso-
nances in Western music theory (Shapira Lots & Stone,
2008). Another study showed that the relative stability
of mode-locks could account for tonal stability in West-
ern major and minor modes (Large, 2010). That study
considered pair-wise resonant relationships, described
above, between each oscillation at each tone frequency
and the tonic frequency because the tonic functions as
a cognitive reference point in tonal contexts (Krum-
hansl, 1990). Figure 1C shows the resonance regions
chosen to govern equal-tempered intervals ranging
from the unison to the major seventh (Video S1 and
Table 1; see footnote 1). Figure 1A shows that this model
predicted a high proportion of variance in listener judg-
ments of the major mode, and it was higher than any of
the psychoacoustic models tested (Krumhansl, 1990); it
also generalized to the minor mode (r2 ¼ .77 for � ¼
0.85), which most of the psychoacoustic models did not.
Thus, the theoretical stability of mode-locking interac-
tions in oscillatory neural populations predicts empiri-
cally measured tonal stability for Western tonal
contexts.

Cross-Cultural Judgments of Tonal Stability

A critical test of this approach is whether it generalizes
across musical cultures. Castellano et al.’s (1984) cross-
cultural study of the perception of Hindustani music
provides precisely the kind of empirical data needed
to test this hypothesis. They collected stability judg-
ments for two groups of listeners. One group consisted
of eight Indian listeners who were students at Cornell
University and had been exposed to Indian music start-
ing at an average age of 12 years, six played an Indian
instrument with an average of 4 years of formal training,
and all listened to Indian music an average of 3 hr per
week and to Western music an average of 10 hr per
week. The other group consisted of 8 Western listeners,
seven of whom played a Western instrument, averaging
6 years of formal training. They listened to Western
music 18 hr per week. They had minimal exposure to
Indian music, although one reported having heard some,
and none had any formal instruction in Indian music.

The stimuli were synthesized digitally by a DMX-
1000 (Digital Music Systems, Inc.) signal-processing
computer under the control of a PDP-11/24 computer.
They were based on an A4 of 440 Hz. Each tone con-
sisted of a fundamental and 6 higher harmonics with the

2 Videos S2 and S3 can be found in the supplementary materials
section at the online version of this paper.
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following amplitude ratios: 1, 1/3, 1, 1/3, 1, 1/3, 1. The
amplitude envelope consisted of a 10-ms onset gradient
followed by a linear decay to 0, simulating a plucked
instrument. Frequency modulation (FM) was used to
simulate the sound of the C (Sa) and G (Pa) drone tones,
with a ratio of 7:5 between modulator and carrier fre-
quencies and a DMX modulation index of 10. The stim-
uli also contained glides between notes simulating
ornamentation in Indian music.

The sthāyi (the initial phase of a fixed composition
which establishes a rāga) and theme (some brief passage
incorporating characteristic melodic features) for each
of 10 rāgas were taken from Daniélou (1968). There
were 10 blocks of trials, played in a different random
order for each listener, which had the following format.
Each began with two successive presentations of the
sthāyi, which averaged 65.8 s, with a range of 37.8 –
93.0 s. After 2 practice trials, 12 trials presented the
theme of the rāga followed by a probe tone that was
sounded without the drone. The themes’ durations
averaged 19.4 s, ranging from 10.8 to 29.4 s, and probe
tones were 1 s in duration. The probe tones were all 12
tones of the chromatic scale. Listeners were instructed
to judge how well each probe tone fit with the preceding
theme in a musical sense, on a 7-point scale ranging
from fits poorly (1) to fits well (7). The resulting data
for Western and Indian listeners are shown in Table S1,
which also shows the durations of the tones in each rāga
theme.3

Method

The first step was to choose the strongest natural
resonance (based on an integer ratio) that approxi-
mates each equal-tempered frequency ratio within
a specified tolerance. This was done by searching
through the sequences of irreducible fractions (called
Farey ratios; Hardy & Wright, 1979) between 1 and 2
in increasing order until the required tolerance is met,
here chosen to be 1%. The found Farey ratios, shown
in Table 1, are identical to the JI ratios except for the
tritone (from C to F�/G�) and the minor seventh (from
C to A�/B�).

Next, to compute the stability of each scale tone, we
considered pair-wise interactions with the tonic fre-
quency. This enables a simple closed-form equation,
based on Equation 1, that gives a good approximation
of relative stability. We used �ðkþm�2Þ=2 to predict the
relative stability of different mode-locked states where

the k’s and m’s are the numerators and denominators of
the Farey ratios obtained above. Any tones not sounded
are assigned a stability value of 0. In other words,

stability � �ðkþm�2Þ=2 if k=m is in context;
0 if k=m not in context:

�
ð2Þ

Because this approximation is based only on the input,
it holds for a wide range of parameter values in Equa-
tion 1. Numerical simulations confirm that it holds for
more complex network interactions as well (see Appen-
dix and Videos S2 and S3; see footnote 2).

Finally, the � parameter was fit to the average of the
Indian and Western data for each rāga separately by
performing a least squares fit of Equation 2 with 0 < �
< 1 as the only free parameter. The resulting stability
predictions were used, along with other predictors, in
step-wise regression analyses of the behavioral ratings
from both the Indian and Western listeners.

Results

The ratings for the two groups were correlated with
each other for each rāga separately. The correlations
between groups averaged r2(11) ¼ .87, ranging from
.70 to .93, p < .01 for every rāga. The ratings of the two
groups were then averaged. As seen in Figure 3, the
neurodynamic model predictions correlated signifi-
cantly with the averaged perceptual ratings for every
rāga, mean r2(11) ¼ .90, min ¼ .84, max ¼ .93, all
p < .01. For comparison, we computed the correlations
between the average data and the durations of the tones
in each rāga. These correlations, mean r2(11) ¼ .84,
min ¼ .77, max ¼ .91, all p < .01, were lower, t(9) ¼
2.68, p ¼ .03. Thus, the model fit the averaged data
better than the durations.

The same analysis, comparing the neurodynamic
model with the durations as predictors of the data, was
done for the Indian and Western data separately. For
the Indian data, the model predictions correlated sig-
nificantly with the perceptual ratings for every rāga,
mean r2(11) ¼ .90, min ¼ .77, max ¼ .98, all p < .01.
For comparison, we computed the correlations
between the Indian data and the durations of the tones
in each rāga. For the Indian listeners, these correla-
tions, mean r2(11) ¼ .83, min ¼ .74, max ¼ .94, all
p < .01, were lower than the correlations with the
model, t(9) ¼ 2.60, p ¼ .01. So, again the model fit the
data better than the durations.

For the Western data, the model predictions corre-
lated significantly with the perceptual ratings for
every rāga, mean r2(11) ¼ .84, min¼ .76, max¼ .94, all

3 Table S1 can be found in the supplementary materials section at the
online version of this paper.
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p < .01, but were lower than those for the Indian data,
t(9)¼ 2.60, p¼ .01. We then computed the correlations
between the Western data and the durations of the
tones in each rāga. For the Western listeners, these cor-
relations, mean r2(11) ¼ .80, min ¼ .72, max ¼ .88, all
p < .01, were not significantly different from the corre-
lations with the model (p ¼ .17). Finally, we compared
the Indian and Western listeners’ correlations between
their ratings and tone durations. These were not signif-
icantly different from one another (p ¼ .32). Thus, for
the Indian listeners the model outperformed the dura-
tions, but not for the Western listeners, and both groups
were equal in the extent to which their data matched the
durations.

Next, the listener judgments were combined into
a single variable (10 rāgas � 12 tones) for step-wise
regression analyses that included a wide range of factors
that might be expected to generalize across cultures. The

factors considered were: predictions of the neurody-
namic model (Equation 2), tone durations, harmonicity
([k þ m – 1]/[km], see Gill & Purves, 2009), resonance
region widths (Shapira Lots & Stone, 2008), and six
measures of consonance (Krumhansl, 1990, p. 57, Table
3.1). For the neurodynamic model, the parameter � was
fit to the average of the Indian and Western data for
each rāga separately (see Method).

Because the stability ratings of Indian and Western
listeners were highly correlated, the first regression
analysis was performed to determine which variables
could account for the grand average ratings. Table 2
(top) shows the results. The neurodynamic model
entered at step 1 and accounted for a highly significant
amount of the variance for all rāgas taken together,
R2 (119) ¼ .79, p < .0001, as well as separately. Dura-
tion came in at step 2 with both dynamics and duration
contributing significantly (at p < .0001) to fitting the
averaged data, R2 (118) ¼ .84, p < .0001, suggesting
a combination of intrinsic dynamics and tone duration
accounts well for these patterns. Of the remaining vari-
ables, the width of the resonance region (Shapira Lots
& Stone, 2008) was the only one to contribute signif-
icantly (at p ¼ .04) to the fit of the data. Because the
contribution is relatively modest and the resonance
region model is closely related to the neurodynamic
model conceptually, we did not consider it in the next
analysis.

We then asked whether culturally specific variables
might explain the remaining differences between the
Indian and Western participants (bottom Table 2). We
considered several variables, including thāt (scale)
membership, drone, the vādi and samvādi, which are
tones emphasized in the individual rāga, that might be
more salient for the Indian listeners, and the tone
profiles of several major and minor keys related to C
major and C minor that might be more salient for the
Western listeners. For the Indian data, two of these
made highly significant contributions over and above
the neurodynamic model and tone duration: whether
the tone was in the drone (p ¼ .0002; the p-values
given are those when the variable was first added
to the model) and whether the tone was in the thāt
(p < .0001). The former shows an appreciation of the
central role of the drone in anchoring melodies in
the style; the latter reflects the concept of scale mem-
bership. For the Western data, two factors made sig-
nificant contributions: the tone profiles of C minor
(p ¼ .005) and G major (p ¼ .03), which reflect the
Western concept of major and minor scales. The fit of
the full regression models to the respective data is
shown in Figures 4 and 5.

FIGURE 3. The fit of the neurodynamic model predictions and the

duration statistics to the average data. Shown in the figure are the

tone profiles for 10 North Indian rāgas averaged across Indian and

Western listeners (circles), the predictions of stability (Equation 2) for

each rāga, based on an analysis of mode-locking dynamics (dots) along

with the � value for the maximum correlation, and the predictions based

on the relative durations of tones (triangles).

326 Edward W. Large, Ji Chul Kim, Nicole Kristine Flaig, Jamshed J. Bharucha, & Carol Lynne Krumhansl



Discussion

Here we have shown how tonal stability, a high-level
perception that is central to the experience of tonal
music, can be accounted for by a biologically plausible

model of neural oscillations in a dynamical system. Pre-
vious models have considered only stability relations in
Western music as judged by Western listeners. The cur-
rent study shows that a fully generic model of mode-
locking neurodynamics predicts substantive musical

TABLE 2. Results of Step-wise Regressions Predicting the Average Indian and Western Data (Top) and the Indian and Western Data
Separately (Bottom)

Step

Average Indian and Western data

Predictor p-value Cumulative R2

1 Dynamics < .0001 .79
2 Duration < .0001 .84
3 Resonance region width (Lots & Stone) .04 .85

Step

Indian data Western data

Predictor p-value Cumulative R2 Predictor p-value Cumulative R2

1 Dynamics < .0001 .80 Dynamics < .0001 .69
2 Duration < .0001 .84 Duration < .0001 .73
3 Drone .0002 .86 C Minor .005 .75
4 Thāt < .0001 .88 G Major .03 .76

FIGURE 4. The fit of the full Indian regression model (dots) to the

Indian probe-tone rating data (circles) for each rāga (see Table 2,

bottom left).

FIGURE 5. The fit of the full Western regression model (dots) to the

Western probe-tone rating data (circles) for each rāga (see Table 2,

bottom right).
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invariances, matching empirical observations in a cross-
cultural study of tonal stability judged by listeners
familiar and unfamiliar with the style of Hindustani
music. The simple neurodynamic predictions are
improved by taking into account the duration of tones
in the context sequences. A third layer of explanation is
added by considering the effect of culture-specific
knowledge to account for residual differences between
the encultured and naı̈ve participants. More realistic
models, based on complex numerical simulations that
incorporate both mode-locking and synaptic plasticity,
are confirming and refining the predictions presented
here (see Appendix and Videos S2 and S3; see foot-
note 2). These findings raise new and interesting possi-
bilities for studying tonal cognition using theoretical
models that are consistent with auditory neurophysiol-
ogy (Hoppensteadt & Izhikevich, 1997; Large &
Almonte, 2012; Lerud et al., 2014).

The neurodynamic approach may shed light on
a number of persistent mysteries surrounding music
cognition and the development of musical languages.
The perceptual stability of mode-locked states explains
the strong propensity for perfect consonances (2:1, 3:2,
4:3) in the scales of almost all musical cultures, includ-
ing the sophisticated small integer ratio tuning systems
of the European, Chinese, Indian, and Arab-Persian
musical systems (Burns, 1999), that began to develop
more than 9,000 years ago (Zhang, Harbottle, Wang, &
Kong, 1999). Regions of stability around integer ratios
can explain the considerable latitude in interval tuning
found in different styles, which has been used to
discredit simple-ratio theories (Burns, 1999; Helmholtz,

1885/1954), and the well-established finding that inter-
vals are perceived categorically (Burns, 1999; Smith,
Nelson, Grohskopf, & Appleton, 1994). Third, the fact
that stability properties are intrinsic to neurodynamics
explains why even infants have more stable memory
traces for the perfect consonances than the dissonances
in melodic sequences (Schellenberg & Trehub, 1996).
These dynamical principles also make strong neurophys-
iological predictions and have been shown to predict
nonlinear responses to musical intervals measured in the
auditory brainstem response (Large & Almonte, 2012;
Lee et al., 2009; Lerud et al., 2014). This approach could
also shed light on the development of musical regulari-
ties, implying that certain pitches occur more frequently
because they have greater dynamical stability in underly-
ing neural networks. Future research will explore whether
dynamical systems theory can be extended to describe
other invariant aspects of musical structure and cognition
in terms of underlying neurodynamics.
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Appendix

SIMULATION AND EXTENSION OF NEURODYNAMIC MODEL

Videos S2 and S3 demonstrate more complex simula-
tions that are refining and extending the predictions of
the purely theoretical model discussed in the main text
(see footnote 2). The simulations involve training an
oscillator network capable of Hebbian plasticity with
musical sequences and then testing its responses to
another set of sequences. Oscillators in this network,
and the input to this network, are tuned using equal
temperament. We simulated two octaves of oscillators
from C3 to C5. The network oscillators operate in
a supercritical regime of Hopf bifurcation (a ¼ 0.002,
�1 ¼ �2, �2 ¼ �4) where they oscillate spontaneously
without external driving. The choice of parameters was
somewhat arbitrary, and they were not fit to the data.
Initial conditions for all oscillators were zi ¼ 0 for all i.

The model generates memory traces as neural oscil-
lations at the frequencies of the tones in the context
sequences; oscillations interact as defined by Equations
A1 and A2. The network was stimulated with musical
sequences, and the pattern of oscillator amplitudes in
memory is interpreted directly as tonal stability (no
actual experiments were simulated, so probe tones were
not introduced).

Each oscillator has three types of input (Equation A1,
below):

1. External input: A melody or a chord progression
consisting of a sequence of complex-valued sinu-
soids. Each oscillator receives input at its own nat-
ural frequency through a linear driving term, xi(t).

2. Network input: 24 two-frequency monomials, one
monomial for each of the other oscillators in the sim-
ulation (the terms with Cij in Equation A1). Self-
connections are not allowed. Each monomial is cho-
sen according to normal form theory, that is, it is the
lowest-order monomial that is resonant for the two
oscillators in question. Thus, these monomials are the
same as those used to make the closed-form predic-
tions in the main text. However, that analysis consid-
ered only connections with the tonic oscillator. In the
simulation all network frequencies interact.

3. Network input: 275 three-frequency monomials, one
monomial for each pair of other network oscillators
(the terms with Dijk in Equation A1). Self-connections
are not allowed (and there are some other restric-
tions). Each monomial is the lowest-order resonant
monomial for a given set of three frequencies.

The dynamics of each oscillator in the network are
described by

� i
dzi

dt
¼ zi aþ i2�þ �1jzij2 þ

��2jzij4

1� �jzij2

0
@

1
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þ
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If the oscillator frequencies are near the resonant
relationships mijfi ¼ kijfj (defining two-frequency
monomials) and rijkfi ¼ pijkfj þ qijkfk (three-frequency
monomials) where fi is the natural frequency of the ith
oscillator, and mij, kij, rijk, pijk and qijk are integers, then
the corresponding oscillators interact by mode-locking
to each other. The value of a > 0 was chosen so that the
memory trace for each frequency, once established, per-
sists indefinitely. The fact that � i appears on the left-
hand side of the equation means that relaxation time
(time to reach steady-state amplitude) is measured in
oscillator cycles.

All of the connections are determined using a rule for
Hebbian plasticity

� i
dCij

dt
¼ Cij �þ �1jCijj2 þ

�C�2jCijj4

1� �CjCijj2
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@
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Two separate matrices are learned, one for the two-
frequency monomials (Cij), one for the three-frequency
monomials (Dijk). The learning rules operate in the
supercritical Hopf regime (�, g > 0; �1, �2, 	1, 	2 < 0;
�, 
 > 0). The system was trained on cadences in the key
of C (IV-V7-I), repeated until connection strengths
appeared to reach stable values (35 times; Video S2; see
footnote 2).

Two tests were run (Video S3; see footnote 2). The
first test was the first phrase of Twinkle Twinkle Little
Star. The movie shows the piano roll notation for the
stimulus, the time-varying amplitude of the 25 oscilla-
tors in the network, and the correlations of the oscillator
amplitudes with the C major tone profile (upper octave

only, C through B). A period of silence is simulated at
the end, and the amplitude pattern in the network
relaxes toward steady state, which resembles the tone
profile of C major.

This simulation validates and extends the purely the-
oretical, closed-form model of Equation 2 (main text).
First, it confirms that those tones sounded in the con-
text sequence achieve non-zero values. Second, it shows
that the expression used to predict tonal stability,
�ðkþm�2Þ=2, gives a quite reasonable approximation to
the steady-state amplitudes reached in the simulation,
both providing good fits to the C major tone profile.

Moreover, the simulation extends the predictions by
including synaptic plasticity and multi-frequency inter-
actions. These two features allow the tone E to achieve
greater amplitude than F in this example. This feature of
the simulation addresses a systematic flaw in the pre-
dictions of the purely theoretical model, in which the F
(4:3) is predicted to be more stable than the E (5:4),
because the closed-form model assumes only two-
frequency interactions. The additional amplitude of E
arises as a combination (three-frequency interaction) of
C and G. Additionally, the tone B achieves nonzero
amplitude in the simulation despite the fact that it does
not occur in the context sequence. This also arises as
a combination frequency, a combination of G and D.
Combination frequencies are learned via synaptic plas-
ticity (Equation A2).

The second test was the theme from Rāga Bilāval,
used in the Castellano et al. (1984) experiment. Bilāval
was chosen for the simulation because the underlying
thāt (scale) uses the same pitches as the Western C
major scale. The movie shows the piano roll notation
for the stimulus, the time-varying amplitude of the 25
oscillators in the network, and the correlations of the
oscillator amplitudes with the Rāga Bilāval tone profile
for the Western listeners (upper octave only, C through
B). A period of silence is simulated at the end, and the
amplitude pattern in the network relaxes toward steady
state, which resembles the tone profile for the Western
listeners to Rāga Bilāval.
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